

FIC. INSTITUT DE FISICA C O R P U S C U L A R

This research is supported by:

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Plan de Recuperación, Transformación Resiliencia

ECAL-NPOD Performance study

Melissa AS, Shan H, Adrián IQ, Jesús MH shan.huang@ific.uv.es

28 October 2024

Financiado por la Unión Europea **NextGenerationEU**

- ECAL-NPOD
- Analysis workflow (using Marlin)
 - Simulation
 - Reconstruction
 - Evaluation
- Results
 - Baseline performance
 - Vertex finding
 - Particle identification (PID by MAS)

■ ECAL-P: 540 x 90 x 90 mm³

- X = 96 x 5.5 mm
- Y = 16 x 5.5 mm
- Z = 20 x 4.5 mm
- ECAL-E: 360 x 180 x 210 mm³
 - X = 64 x 5.5 mm
 - Y = 32 x 5.5 mm
 - $Z = (15-1) \times 15 \text{ mm} (10 \text{ mm possible})$

- $W = 4.2 \text{ mm} = 1.2 X_0$
- Si = 0.500 mm

ECAL-E layer (in sim.)

Material	d [mm]
W	4.2
C fibre	1.5
Kapton	0.1
Glue	0.1
Air	0.1
Si	0.5
Air	0.1
PCB	1.7
ASICs	1.2
Air	5.5
Total	15

ECAL-E baseline

Intrinsic linearity

 $E_0 = p E_{dep}^n$

LUXE Analysis 2024-10-28

ECAL-NPOD requirement

NPOD requirement:

- Energy resolution (facile digitization)
- Ability of shower separation (clustering)
- Track vector reconstruction
- Particle identification
- Background rejection

A slide from Raquel shows how shower separation affects on the NPOD sensitivity

Raquel Quishpe (raquel.quishpe@kit.edu)

2

ECAL-NPOD

- Analysis workflow (using Marlin)
 - Simulation
 - Reconstruction
 - Evaluation
- Results
 - Baseline performance
 - Vertex finding
 - Particle identification (PID by MAS)

Simulation

- Geometry description of ECAL-E in dd4hep
- Standalone simulation done by ddsim
- Facile digitisation:
 - Hit deposit smearing 10%
 - Hit deposit cut at 1/2 MIP

Simulations for analysis:

- Mono-energetic particle sims for the baselines
- Two-particle sims for clustering
 - Parallel with various distances in between
 - From a fixed vertex with various angles
- Flat-spectrum sims for PID

Repository on https://github.com/airqui/ECALe-lcio

Reconstruction

- Baseline performance:
 - Analogue ECAL: hit has amplitude
 - Digital ECAL: there is a hit or there is not
- Clustering:
 - Nearest-neighbour clustering
 - Reclustering around cylindrical cores
- Figures-of-merit:
 - ECAL resolution and linearity
 - Efficiency of successful clustering
 - Reconstruction residues on the vertex

Tuneable parameters for evaluation:

- Analogue vs digital
- NN distance
 - Cut on the distance of candidates
 - Hit deposit variable distance
 - Reclustering parameters
 - Cylinder radius

Repository on https://github.com/airqui/ECALe-lcio

- ECAL-NPOD
- Analysis workflow (using Marlin)
 - Simulation
 - Reconstruction
 - Evaluation
- Results
 - Baseline performance
 - Vertex finding
 - Particle identification (PID by MAS)

10/16

NPOD ECAL Performance

Baseline: A/C & D/C

Separation ability

- Results from two-photon sims at 3.5 GeV
- Photons are parallel to each other and perpendicular to the surface of the ECAL
- Photons are separated with d \pm 5 $\sqrt{2}$ mm
- 100 • Ratio = $N_{two-cluster-event} / N_{total-event}$

d = 20 mm

d = 50 mm

eCut = 1, 2, 3, 4, 5 MIPs

- Same dataset as the previous
- Greyscale shows the clustering efficiency
- dCut: to connect two hits within a given distance
- eCut: to connect a hit about a given E_{dep}

Cylinder width

- Results from two-photon sims at 3.5 GeV
- Photons are from a same vertex at 2.5 m away from the front surface of the ECAL
- Black: naive NNClustering
- Red: re-clustering with only the hits within the Moliere radius (85%) of the core

A/C vs D/C

- Results from two-photon sims at 3.5 GeV
- Photons are from a same vertex at 2.5 m away from the front surface of the ECAL
- Red: fitting the track with E_{dep} info.
- Blue: fitting the track with hit info.

Preliminary summary

- Obtained a valid work flow for ECAL analysis
- ECAL-NPOD Performance in a close vicinity of NPOD requirements
 - More analysis is ongoing: many parameters to play with
 - Preliminary results show great improvement from our first estimates
 - Next step: towards vertex reconstruction and uncertainties on ALP sensitivity

NPOD ECAL Performance

Backups

LUXE Analysis 2024-10-28

17/16

ECAL-E resolution

Separation ability

NPOD ECAL Performance

