Parton evolution with α_s at small k_T

DGLAP evolution – solution with parton branching method $\int_{z_M}^{z_M} dz \int d\mu'^2 \Delta_s(\mu^2) D(B)(x) \int_{z_M}^{z_M} dz \int d\mu'^2 \Delta_s(\mu^2) D(B)(x) \int_{z_M}^{z_M} dx$

•
$$f(x,\mu^2) = f(x,\mu_0^2)\Delta_s(\mu^2) + \int \frac{dz}{z} \int \frac{d\mu}{\mu'^2} \cdot \frac{\Delta_s(\mu')}{\Delta_s(\mu'^2)} P^{(R)}(z) f\left(\frac{x}{z},\mu'^2\right)$$

 $f_0(x,\mu^2) = f(x,\mu_0^2)\Delta(\mu^2)$

DGLAP evolution – solution with parton branching method

•
$$f(x,\mu^2) = f(x,\mu_0^2)\Delta_s(\mu^2) + \int^{z_M} \frac{dz}{z} \int \frac{d\mu'^2}{\mu'^2} \cdot \frac{\Delta_s(\mu^2)}{\Delta_s(\mu'^2)} P^{(R)}(z) f\left(\frac{x}{z},\mu'^2\right)$$

$$f_{0}(x,\mu^{2}) = f(x,\mu_{0}^{2})\Delta(\mu^{2})$$

$$f_{1}(x,\mu^{2}) = f(x,\mu_{0}^{2})\Delta(\mu^{2}) + \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{\Delta(\mu^{2})}{\Delta(\mu'^{2})} \int^{z_{M}} \frac{dz}{z} P^{(R)}(z) f(x/z,\mu_{0}^{2})\Delta(\mu'^{2})$$

$$x t$$

$$t'$$

$$F(z)$$

Validation of method with QCDnum at NLO

• Very good agreement with NLO - QCDnum over all x and μ^2 • the same approach works also at NNLO !

Validation of method at NLO: z_M - dependence

- No dependence on z_M if z_M is large enough:
 - approximation is of
- Very good agreement with NLO QCDnum

PDFs from Parton Branching method: fit to HERA data

Convolution of kernel with starting distribution

$$xf_a(x,\mu^2) = x \int dx' \int dx'' \mathcal{A}_{0,b}(x') \tilde{\mathcal{A}}_a^b(x'',\mu^2) \,\delta(x'x''-x)$$
$$= \int dx' \mathcal{A}_{0,b}(x') \cdot \frac{x}{x'} \,\tilde{\mathcal{A}}_a^b\left(\frac{x}{x'},\mu^2\right)$$

Fit performed using xFitter frame (with collinear Coefficient functions at NLO)
 using full HERA I+II inclusive DIS (neutral current, charged current) data

in total 1145 data points

 $3.5 \le Q^2 \le 50000 \text{ GeV}^2$ $4 \cdot 10^{-5} < x < 0.65$

- using starting distribution as in HERAPDF2.0
- $\chi_2/ndf = 1.2$
- → Can be easily extended to include any other measurement for fit !

Fits to DIS x-section at NLO: F_2 and F_2^c

Collinear parton distributions after fit

• fit 1 with $\alpha_s(\mu)$ • $\mu = q$

> • as good as HERAPDF2.0 $\chi^2/ndf = 1.2$

• fit 2 with $\alpha_s(\mu)$ • $\mu = max(1,q(1-z))$ • $\chi^2/ndf = 1.21$

very different gluon distribution obtained at small Q²

H. Jung, Parton evolution with α_s at small k_T , WOM meeting, October 30, 2024

Analytic continuation of α_s into the non-pert region

- α_s with extension to small k_T region
 - with taming parameter: $q_{eff}^2 = q^2 + m_{soft}^2$ here $m_{soft} = 1$
 - with analytic continuation ala A. Kotikov et al

Collinear parton distributions after fit with new α_s

- fit with tamed $m_{soft} = 1$ GeV $\alpha_s: \chi^2/ndf = 1.21$
- fit with tamed $m_{soft} = 0.77$ GeV α_s : $\chi^2/ndf = 1.25$
- fit with tamed $m_{soft} = 1.3$ GeV α_s : $\chi^2/ndf = 1.22$
- fit with analytic α_s : $\chi^2/ndf = 1.75$
 - not really good
 - Especially shape of gluon at starting scale in different !

Fits to DIS x-section at NLO: F_2

H. Jung, Parton evolution with α_s at small k_T , WOM meeting, October 30, 2024

Fits to DIS x-section at NLO: F_2

Fit results with α_s with taming with m_{soft}

Conclusion

- $^{\odot}$ Treatment of small k_{T} region in QCD fits very important, if scale in α_{s} is k_{T} dependent
 - ^a with taming (instead of fixing) α_s already very good fit obtained
 - ^a with analytically continued α_s difficulty to fit F2 with good chi2
 - shape of gluon at small scales very different

Appendix