

Taus @ Muon Collider

Sarah Demers, Ethan Martinez, and Gregory Penn Yale University

Who we are

Ethan

Junior undergrad, Muze

- · Developed anti-proton trigger
- · Tuned anti-proton reco algorithm
- · Trigger effeciency studies

Greg

4th year PhD student, ATLAS

- · T's @ HL-LHC, offline and online (Event Filter)
- · H > TT differential & CP property
- · Trigger "contact" for H+TT onalyses

For Later Reference: Taus

Final State	Branching Fraction
T→eVz Ve	17.8%
てールマルル	17. 4%

Final State	Intermediate Meson	Branching Fraction
てートンマ		11.5%
てートボウル	p(770 MeV)	25.9%
てるかれるよう	a, (1260 MeV)	9.3%
てるよけしゃ	a, (1260 MeV)	9.4%
でったはなれる。		2.8%
Other hadronic		5.9%

Thanks to Rose and Lorenzo Valla for their continued help!

/ Valla

Lorenzo's results

Some particular tunings to energy thresholds in charged pion reco
 ECAL and HCAL energy cuts

- > Standard configuration hits energy thresholds: ECAL = 2 MeV, HCAL = 2 MeV
 - \triangleright Central region π^+ ID efficiency of \sim **25%** (bad)
 - \triangleright Forward region π^+ ID efficiency of \sim 20% (bad)
 - > Few minutes required to process a single event with BIB (good)
- ➤ Low threshold configuration (CLIC): ECAL = 50 keV, HCAL = 250 keV
 - \triangleright Central region π^+ ID efficiency of \sim **90%** (good)
 - \triangleright Forward region π^+ ID efficiency of \sim 80% (good)
 - > Many hours required to process a single event with BIB (bad)
- ➤Intermediate configuration: ECAL = 2 MeV, HCAL = 250 keV
 - \triangleright Central region π^+ ID efficiency of ~75% (ok)
 - \triangleright Forward region π^+ ID efficiency of \sim **70%** (ok)
 - > 10/15 minutes required to process a single event with BIB (acceptable)

Lorenzo's results

• Uses TauFinder (backup) as a baseline ID algorithm, tau eff ~ 66%

Fixed quality cuts

- Number of charged tracks larger than 0 but smaller than 4
- ► Total number of charged + neutral particles below 10
- Reconstruction cuts (customisable)

- ightharpoonup au seed: $p_{\mathsf{T}} > 5 \text{ GeV/c}$
- ightharpoons au seed: impact parameter $10^{-5}~{
 m mm} < {
 m D0} < {
 m 0.5}~{
 m mm}$
- Search cone opening angle: 0.05 rad
- Quality cuts (customisable)
 - ▶ **Isolation cone** around the search cone: + 0.02 rad
 - lacksquare Most energetic particle in the isolation cone: $p_{
 m T}^{
 m IC} < 5~{
 m GeV/c}$

Our strategy

- We'd like to reproduce Lorenzo's results
 - Nominal $\pi^{+/-}$ performance of ~20%, improved by playing with energy thresholds
- Workflow (Ethan's <u>GitHub</u>) (no BiB!):
 - 1. Begin with <u>tutorial</u> (we are using MuColl_v1!)
 - 2. Add tau gun <u>script</u> (15,000 taus, $p_T = 100 \text{ GeV}$)
 - 3. Run the tutorials' simulation
 - 1. Check that the tau branching ratios match what we expect
 - 4. Run the tutorials' digitization and reconstruction
 - 1. Pandora, no changes
 - 5. Add some analysis scripts

15,000 taus

T decay mode	# generated (°1.)	# expected (%)
てマーマルル	20.2%	17.8%
てー ルルルル	19.3%	17.4%
T-TV2	12.3%	11.5%
で一川でいっ	27.4%	25.9'/.*
र⊸गाँग°ग°फ	10.2%	9.31.*
で一川川川で	10.7%	9.4%
others	0%	8.71.

We need to double check:

did we only count taus of these

decay modes, or are they all

that are generated?

Are there Kaons?

Discussion

- We seem to have replicated the low $\pi^{+/-}$ efficiencies!
 - Known from Lorenzo and Rose's work
- Have others seen the observed missing π^0 's?
- Next steps:
 - Inspect reconstructed particle distribution (status in backup)
 - Vary ECAL / HCAL energy hit thresholds as Lorenzo
 - Continue to run tau reco & ID
- But....
- How much more time to put into Pandora? Code up tau reco on our own?
- Do we want to invest more time into MuColl_v1?
 - Move to MAIA immediately?

hanks.

Tau ID

TauFinder:

- 1. Begins with reconstructed charged and neutral particles
- 2. Seed taus from charged particle tracks (!)
- 3. Define a search cone
- 4. Add charged particles within search cone to tau seed, recalculating barycenter
- 5. Add neutral particles within search cone
- 6. Combine into a reconstructed tau
- 7. Loop over seeds
- 8. Merge taus that are within a search cone of one another
- 9. Make some ID cuts!

15,000 taus

Particle (PDGID)	# reconstructed	# expected (truth)
e(11)	0 (!?)	2670
y (13)	1205	2610
8(22)	18925	14190 (depends if Combined into ITO cand.
T° (111)	O(!?)	~7095
TT+1- (211)	3542	~\2495
n (2112)	16844 (!?)	0

A lot looking strange!

- 1. We aren't finding electrons
 - Possibly filtering out secondary particles out incorrectly
- 2. Finding more photons than expected, and no π^0 's
 - π^0 reco / ID "broken"?
- 3. Not enough $\pi^{+/-}$'s, many n's
 - "Broken" track-to-cluster matching?
 - ~30% $\pi^{+/-}$ efficiency
- 4. More work on our side to make sense of these numbers