

p_T Resolution Issues for High Momenta Tracks (3 TeV detector)

Mark Larson, Tate Flicker, Ben Rosser, Karri DiPetrillo

University of Chicago

Background

- First noticed poor p_T resolution in our long-lived particle study for both prompt & displaced tracks w/o BIB overlay
 - Particles have high p_T & tracks often reconstructed with low # of hits
 - Hurts ability to reconstruct LLP mass & use track p_T as BIB discriminator
- Use 3 TeV detector design, 2-pass tracking configuration to reconstruct displaced tracks
 - Later verified similar p_T resolution for baseline tracking setup in mucollbenchmarks using particle gun samples
- Today will present results of this investigation in hopes of feedback/discussion

Reminder: 3 TeV tracker geometry

- Similar to MAIA tracker, but VXD Barrel has 4 doublet layers
 - Ideally expect track passing through all barrel layers to have 14 hits

Displaced Tracks p_T , p_T res.

Displaced tracks: tracks associated to τ decay products ($\tilde{\tau}$ decays to τ)

Track p_T is generally reconstructed lower than truth p_T

Prompt $\tilde{\tau}$ Tracks (4 TeV 10 ns)

Track p_T is reconstructed significantly lower than truth p_T Note: extending timing windows does mitigate this

Particle Gun Samples

- Generated 50, 500, 3000 GeV momentum 1000 event samples of muons & pions evenly distributed in $|\eta| < 1.5$
 - Will present results with baseline tracking configuration + track truth

Momentum	Particle	Avg. $\Delta p_T/p_T$
$50~{ m GeV}$	μ^-	5.5%
	π^+	4.4%
$500~{ m GeV}$	μ^-	21.1%
	π^+	21.1%
3000 GeV	μ^-	41.4%
	π^+	43.3%

• See worsened resolution as momentum increases

50 GeV Particle Gun Plots

Note: only cleaning is $N_{Hits} > 3.5$, particles in uniform $|\eta| < 1.5$ distribution, use mucoll benchmarks reconstruction + hit-based matching

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Number of Hits

Avg: 5.5%

Avg: 4.4%

Number of Hits

Track p_T vs. Number of Hits

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \text{vs. Truth } p_T$

 $\Delta(\frac{q}{p})$ vs. N_{hits}

Note: $\frac{q}{p}$ is parameter actually used by ACTS

500 GeV Particle Gun Plots

Note: only cleaning is $N_{Hits} > 3.5$, uniform $|\eta| < 1.5$ distribution, particles in uniform $|\eta| < 1.5$ distribution, use mucoll benchmarks reconstruction

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Number of Hits

Avg: 21.1%

Avg: 21.1%

Number of Hits

Track p_T vs. Number of Hits

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \text{vs. Truth } p_T$

 $\Delta(\frac{q}{p})$ vs. N_{hits}

3 TeV Particle Gun Plots

Note: only cleaning is $N_{Hits} > 3.5$, particles in uniform $|\eta| < 1.5$ distribution, use mucoll benchmarks reconstruction

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Number of Hits

Avg: 41.4%

Avg: 43.3%

Number of Hits

Track p_T vs. Number of Hits

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \text{vs. Truth } p_T$

 $\Delta(\frac{q}{p})$ vs. N_{hits}

3 TeV Pion Gun Plots (nominal & improved spatial resolution)

Note: only cleaning is $N_{Hits} > 3.5$, uniform $|\eta| < 1.5$ distribution Improved spatial resolution by 2x (worsening by 2x made p_T res. worse)

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Number of Hits

Avg: 43.3% Tracking Eff.: 84.6% Avg: 30.0% Tracking Eff.: 64.8%

26

Number of Hits

Track p_T vs. Number of Hits

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \text{vs. Truth } p_T$

 $\Delta(\frac{q}{p})$ vs. N_{hits}

Potential Causes

- Original theory was that radiation causing significant change in particle momentum mid-flight explained low # of hits associated to tracks
 - Observed this phenomenon for $\tilde{\tau}'s$
 - Does not seem to be the case for particle gun samples only additional Monte Carlo particles likely produced from interaction w/ detector material
- Spatial uncertainties in digitization could be causing tracks to miss hits

Conclusions

- Poor track p_T resolution correlated with low number of hits associated to tracks, which is in turn correlated with momentum of tracking particle
- Improving spatial resolution of track hits improved p_T resolution, but worsened tracking efficiency
 - Improved resolution likely allows reconstruction of higher quality tracks
 - ~15% of events had unassociated tracks, ΔR -matching could match these
- Especially worse resolution for tracks reconstructed w/ low number of hits likely explains why $\tilde{\tau}$ tracks & displaced tracks have poor resolution

Future Investigation

- If useful:
 - Repeat particle gun studies with significantly more events
 - Continue optimizing assumed spatial uncertainties to maximize p_T resolution & tracking efficiency
 - Try ΔR -matching to potentially mitigate loss in tracking efficiency
 - Investigate w/ BIB overlay
- Validate similar relationship w/ p_T res., N_{Hits} in our study
- For reconstruction of $\tilde{\tau}$ mass, can select high N_{Hits} tracks

Memory Usage

- Observe very high memory usage for reconstruction just running ACTS tracking with 10% BIB overlay
 - Large portion of jobs failing when requesting 32 GB of RAM, processing 5 events / job
 - Memory usage seems to increase as continue processing events
- Also observe very large file size (~100 MB / event) for 10% BIB overlay, ~1 GB / event for 100% BIB overlay
 - This is after removing all calo hits & particle flow
- Is this what others are observing too? Any ideas for reducing memory usage?

Backup

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Truth $p_T \left(\frac{\Delta p_T}{\operatorname{Truth} p_T} < 1.0 \right)$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \operatorname{vs.} \chi^2_{red}$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Truth $p_T \left(\frac{\Delta p_T}{\operatorname{Truth} p_T} < 1.0 \right)$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \operatorname{vs.} \chi^2_{red}$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Truth $p_T \left(\frac{\Delta p_T}{\operatorname{Truth} p_T} < 1.0 \right)$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \operatorname{vs.} \chi^2_{red}$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T}$ vs. Truth $p_T \left(\frac{\Delta p_T}{\operatorname{Truth} p_T} < 1.0 \right)$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \operatorname{vs.} \chi^2_{red}$

 $\frac{\Delta p_T}{\operatorname{Truth} p_T} \text{vs. Track } \eta$

