Photon Studies/10TeV Paper Updates

12/04/24

Overview:

- Inserted latest plots to Overleaf draft
- Addressed comments on photon section, made tentative additions to text

3 New Photon Reso Plots, Split by Region

- Created a new figure with the endcap, transition, and barrel region reso curves
- Right now, we also still have the alltheta reso curves and the fine-grain binning of 0-50GeV range
- Question: do we want to keep the original two plots?

 $\hbox{(a) Photon energy resolution, endcap region } \quad \hbox{(b) Photon energy resolution, transition}$

(b) Photon energy resolution, transition region

With BIB overla

(c) Photon energy resolution, barrel region

FIG. 19: Photon energy resolution of reconstructed photons, split into the three regions by theta. The endcap region suffers no interaction with the solenoid, while the transition region suffers the most.

Addressing Lorenzo's Comments

- Went through all of the comments on the photon section
- Question: were the photonGun samples generated with variable thresholding?
- Most of the comments seem to express a lack of clarity on why/how our performance wrt photons (a) degrades at low energy and (b) is affected by the solenoid
- Added some lines of text attempting to clarify these questions (my edits are in orange text, labeled by "RP Addition")

The Bottom Line (as I understand it)

- My edits aim to express what I believe to be the 'bottom line' of our photon reconstruction performance, i.e. the two sources of degradation that need to be addressed in future work
- 1. Pandora. Though it was already mentioned in the text that Pandora has not been optimized for a MuCol environment, I reiterated this in the photon section, specifically addressing difficulties with BIB contamination of soft clusters. I believe this is a satisfactory explanation for our reso and efficiency degradation at low energies.
- 2. The Solenoid. As we have seen, a simple 2D calibration is insufficient to completely mitigate resolution broadening in regions with magnetic material. I believe this is due to the stochastic nature of EM showering. A more nuanced calibration method is likely needed.