TA5 WP4-2 report Generic Tools for Artificial Neural Network Implementation on Field Programmable Gate Arrays

A.B. Cee¹, Arno Straessner¹⁰, and Johann C. Voigt¹⁰

 $^{1}\mathrm{Universit}$ ät Efg $^{10}\mathrm{Technische}$ Universit
ät Dresden

Abstract

 Text

Contents

1	Introduction	1
2	Section 1: Evaluation of hls4ml for real-time classification of astronomical radio signals	2
3	Section 2: VHDL implementation of convolutional neural net- works for real-time processing of ATLAS Liquid-Argon Calorime- ter data	2
4	Section 3: Evaluation of AI hardware engines with AMD Versal AI	2
5	Section 4: Recommendations for users and developers	2
6	Summary and Outlook	2

1 Introduction

Here some text on importance of fast feature extraction in data flow of physics experiments, FPGA solutions and ANN approaches. Connection to PUNCH4NFDI [1] as future service provider.

2 Section 1: Evaluation of hls4ml for real-time classification of astronomical radio signals

editors: MPIfR group Text

3 Section 2: VHDL implementation of convolutional neural networks for real-time processing of ATLAS Liquid-Argon Calorimeter data

editors: Dresden group Text[2]

4 Section 3: Evaluation of AI hardware engines with AMD Versal AI

editors: Mainz group Text

5 Section 4: Recommendations for users and developers

editors: all Text

6 Summary and Outlook

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 460248186 (PUNCH4NFDI). Special thanks to all involved PUNCH4NFDI members.

References

 The PUNCH4NFDI Consortium. PUNCH4NFDI consortium proposal, September 2020. This is the version documenting the work plan at the proposal stage. The reduction in funding led to a re-shaping of the work programme that is documented elsewhere. doi:10.5281/zenodo.5722895. [2] Georges Aad, Anne-Sophie Berthold, Thomas Calvet, Nemer Chiedde, Etienne Fortin, Nick Fritzsche, Rainer Hentges, Lauri Laatu, Emmanuel Monnier, Arno Straessner, and Johann Voigt. Artificial neural networks on fpgas for real-time energy reconstruction of the atlas lar calorimeters. *Computing and Software for Big Science*, 5, 12 2021. doi:10.1007/ s41781-021-00066-y.