Electroweak Physics at the LHC

Stefan Dittmaier

(MPI München)

Contents

- **1** Introduction
- 2 Drell–Yan processes and EW precision physics
- **3** Electroweak corrections general features
- 4 Production of EW gauge bosons
- 5 Electroweak issues in heavy-quark and jet production
- 6 Conceptual and technical issues the current frontier
- 7 Conclusions

1 Introduction

About this talk:

- Considered:
 - * mainly gauge-boson processes
 - \hookrightarrow requirements from theory ?
 - In electroweak radiative corrections
 - → salient features, conceptual and technical issues
 what is needed, what is achievable ?
- Not or barely considered: \rightarrow other talks or other workshops
 - Higgs-boson production
 - physics beyond the Standard Model
 - ◊ pure QCD processes (jet physics etc.)
 - But: no clear separation possible (nor reasonable)
 - many processes involve strong and EW interactions already in LO
 - QCD \oplus EW corrections in precise predictions
 - EW particles + jets
 - EW decays of heavy quarks, etc.

- 2 Drell–Yan processes and EW precision physics
- 2.1 Drell–Yan-like W and Z production

Physics goals:

- $M_{\rm Z} \rightarrow$ detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\mathrm{eff}}^{\mathrm{lept}} \to \mathrm{comparison}$ with results of LEP1 and SLC
- $M_{\rm W} \rightarrow$ improvement to $\Delta M_{\rm W} \sim 15 \,{
 m MeV}$, strengthen EW precision tests
- decay widths $\Gamma_{\rm Z}$ and $\Gamma_{\rm W}$ from M_{ll} or $M_{{\rm T},l\nu_l}$ tails
- search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
- information on PDFs

EW corrections to W production: $pp(\rightarrow W) \rightarrow l\bar{\nu}_l + X$

- $\mathcal{O}(\alpha)$ correction in pole approximation (PA) Baur, Keller, Wackeroth '98; Dittmaier, Krämer '02
- complete $\mathcal{O}(\alpha)$ correction Dittmaier, Krämer '02; Baur, Wackeroth '04; Arbuzov et al. '05; Carloni Calame et al. '06
- multi-photon radiation via leading logs Baur, Stelzer '99; Carloni Calame, Montagna, Nicrosini, Treccani '03; Placzek, Jadach '04

Results for $\mathcal{O}(\alpha)$ corrections:

 \rightarrow more details in talk of M.Krämer

		$\mathrm{pp} \to \iota$	$ u_l l^+ (+\gamma)$ a	$t\sqrt{s} = 14 \mathrm{TeV}$	V Les Hou	ches SMH proceedings '06
$M_{\mathrm{T},\nu_l l}/\mathrm{GeV}$	50–∞	100–∞	200–∞	500–∞	1000–∞	2000–∞
$\sigma_0/{ m pb}$						
Dĸ	2112.2(1)	13.152(2)	0.9452(1)	0.057730(5)	0.0054816(3)	0.00026212(1)
$\delta_{\mu^+ \nu_{\mu}} / \%$						
Dĸ	-2.75(1)	-5.03(2)	-7.98(1)	-14.43(1)	-21.99(1)	-32.15(1)
HORACE	-2.77(1)	-5.08(1)	-8.01(1)	-14.44(1)	-21.99(1)	-32.16(1)
SANC	-2.76(2)	-5.06(2)	-7.96(2)	-14.41(2)	-21.94(2)	-32.12(2)
Wgrad	-2.69(1)	-4.84(1)	-7.96(1)	-14.48(1)	-22.03(1)	-32.3(1)

 \hookrightarrow Large corrections at high transverse W mass $M_{\mathrm{T},\nu_l l}$!

$\mathcal{O}(\alpha)$ corrections near the Jacobian peak

- EW corrections sensitively depend on treatment of photon radiation

 → issue of inclusiveness / KLN violation causes large effects
- multi-photon radiation important near Jacobian peak
- pole approximation (PA) for W resonance sufficient near Jacobian peak, but not for large M_{T,νl}

EW corrections to Z production: $pp(\rightarrow Z) \rightarrow l^+l^- + X$

- photonic $\mathcal{O}(\alpha)$ correction Baur, Keller, Sakumoto '97
- weak $\mathcal{O}(\alpha)$ correction

Baur, Wackeroth '99; Brein, Hollik, Schappacher '99; Arbuzov et al. '06

$M_{\mathrm{e^+e^-}}/\mathrm{TeV}$	$\sigma_{ m Born}/{ m fb}$	$\sigma_{ m corr}/{ m fb}$	$\delta_{ m weak}/\%$	$\delta_{ m exp}/\%$
0.9 - 1.1	6.2157	5.6253	-9.5	3
1.1 - 1.5	3.5076	3.1475	-10.3	4
1.5 - 1.75	0.6028	0.5307	-12.0	9.5
1.75 - 2.0	0.2669	0.2324	-12.9	14
2.0 - 2.5	0.1888	0.1583	-16.2	17
2.5 - 3.0	0.04906	0.04023	-18.0	30
3.0 - 4.0	0.01817	0.01462	-19.5	50

Brein et al. '99

- \hookrightarrow Large corrections at high invariant Z mass $M_{\rm e^+e^-}$!
- multi-photon radiation via leading logs Baur, Stelzer '99; Carloni Calame, Montagna, Nicrosini, Treccani '05

2.2 EW precision observables

Most important precision observables:

• $M_{ m W}$ (direct measurement vs. mu	Djouadi, Verzegnassi '87; Djouadi '88; Kniehl, Kühn, Stuart '88; Kniehl, Sirlin '93 Djouadi, Gambino '94	
mixed QCD/EW 2-loop correc		
complete EW 2-loop corrections known		Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02 Onishchenko, Veretin '02
\diamond improvements by 3-loop Δho	Avdeev et al. '94 v.d.Bij et al. '00;	1; Chetyrkin, Kühn, Steinhauser '95 Faisst et al. '03; Boughezal, Tausk, v.d.Bij '05

- \hookrightarrow theoretical uncertainty $\Delta M_{
 m W} \sim 4 \,{
 m MeV}$
- $\sin^2 \theta_{\rm eff}^{\rm lept}$ (from various asymmetries)
 - $\diamond\,$ mixed QCD/EW 2-loop and 3-loop $\Delta\rho$ corrections as for $M_{\rm W}$
 - EW 2-loop corrections in progress (fermion loops and Higgs mass dependence complete)

Awramik, Czakon, Freitas, Weiglein '04 Hollik, Meier, Uccirati '05

 \hookrightarrow theoretical uncertainty $\Delta \sin^2 \theta_{\rm eff}^{\rm lept} \sim 5 \times 10^{-5}$

 \hookrightarrow Theoretical predictions in good shape for LHC

3 Electroweak corrections — general features

General considerations about EW corrections at hadron colliders

• Naively expected size:

- However: systematic enhancement of EW effects due to
 - \diamond logarithms $\alpha \ln^n(M_W/Q)$, n = 2, 1 (Sudakov and subleading) at high scales Q
 - \hookrightarrow important for new-physics searches
 - kinematic effects from photon radiation off leptons (e.g. Drell-Yan)
 - \hookrightarrow important for reconstruction of W's, Z's, etc.

Electroweak radiative corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

+ sub-leading logarithms from collinear singularities

Typical impact on $2 \rightarrow 2$ reactions at $\sqrt{s} \sim 1 \, {\rm TeV}$:

$$\begin{split} \delta_{\rm LL}^{1-\rm loop} &\sim -\frac{\alpha}{\pi s_{\rm W}^2} \ln^2 \left(\frac{s}{M_{\rm W}^2}\right) &\simeq -26\%, \qquad \delta_{\rm NLL}^{1-\rm loop} \sim +\frac{3\alpha}{\pi s_{\rm W}^2} \ln \left(\frac{s}{M_{\rm W}^2}\right) &\simeq 16\%\\ \delta_{\rm LL}^{2-\rm loop} &\sim +\frac{\alpha^2}{2\pi^2 s_{\rm W}^4} \ln^4 \left(\frac{s}{M_{\rm W}^2}\right) \simeq 3.5\%, \qquad \delta_{\rm NLL}^{2-\rm loop} \sim -\frac{3\alpha^2}{\pi^2 s_{\rm W}^4} \ln^3 \left(\frac{s}{M_{\rm W}^2}\right) \simeq -4.2\% \end{split}$$

 \Rightarrow Corrections still relevant at 2-loop level

Note: differences to QED / QCD where Sudakov log's cancel

- massive gauge bosons W, Z can be reconstructed
 → no need to add "real W, Z radiation"
- non-Abelian charges of $\mathrm{W},\,\mathrm{Z}$ are "open" $\,\to\,$ Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and suggested resummations via evolution equations Depresent Complice Depresent

Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al.; Hori et al.; Melles; Kühn et al. '00–'06

Electroweak effects in PDFs

Analogy to QCD-improved parton model:

- Collinear splittings $q \rightarrow q\gamma$, $\gamma \rightarrow q\bar{q}$ lead to quark mass singularities
- \hookrightarrow absorb $\alpha \ln m_q$ singularities via factorization into redefined PDFs

Previous approach: no $\mathcal{O}(\alpha)$ -corrected PDFs available

 \hookrightarrow factorization of collinear singularities in $\mathcal{O}(\alpha)$ in $\overline{\mathrm{MS}}$ scheme but: neglect $\mathcal{O}(\alpha)$ effects in PDFs

Estimate of neglected $\mathcal{O}(\alpha)$ effects in PDFs:

 $\Delta(\text{PDF}) \lesssim 0.3\% \ (1\%) \text{ for } x < 0.1 \ (0.4), \ \mu_{\text{fact}} \sim M_{\text{W}}$

New situation: MRST2004QED set of $\mathcal{O}(\alpha)$ -corrected PDFs

Martin, Roberts, Stirling, Thorne '0

Spiesberger '95, '99; Roth, Weinzierl '04

- \hookrightarrow new PDFs should be used if EW $\mathcal{O}(\alpha)$ corrections are included
- use appropriate factorization scheme for $\mathcal{O}(\alpha)$ corrections (= DIS like)
- additional real corrections from photons in initial state
- find processes to measure $\mathcal{O}(\alpha)$ induced photon distribution MRST2004QED: start PDF from model assumption, but agreement with $\sigma_{ep \rightarrow e\gamma + X}$ at HERA

- 4 Production of EW gauge bosons
- 4.1 Gauge-boson pair production

$$\begin{array}{c} & & & \\ &$$

Physics issues:

triple-gauge-boson couplings at high momentum transfer
 problem: "formfactor approach" to switch off unitarity violation limited

(or questionable!)

• dynamics of longitudinal massive gauge bosons at high energies $W_L,\,Z_L\ \sim\$ Goldstone bosons $\ \rightarrow$ scalar sector

strongly interacting longitudinal W/Z bosons if no Higgs exists → unitarity requires resonances

• important class of background processes to many searches, e.g. to ${\rm H} \to {\rm WW}/{\rm ZZ} \to 4f$

Comments to lowest-order predictions:

Predictions in general should include W/Z decays at matrix-element level in order to account for

- spin correlations
- off-shell effects of gauge bosons
 - $\hookrightarrow\,$ include all possible diagrams and respect gauge invariance

Experience from e	e^+e^- physics:
Naive approach	$\frac{1}{k^2 - M^2} \rightarrow \frac{1}{k^2 - M^2 + iM\Gamma(k^2)} \text{violates gauge invariance}$
 constant width 	$\Gamma(k^2) = \text{const.} \longrightarrow U(1) \text{ respected, SU(2) "mildly" violated}$
 step width 	$\Gamma(k^2) \propto \theta(k^2) \longrightarrow U(1)$ and SU(2) violated
 running width 	$\Gamma(k^2) \propto \theta(k^2) \times k^2 \rightarrow U(1)$ and SU(2) violated \hookrightarrow results can be totally wrong !
Better approaches	s: "complex-mass scheme", pole expansions,
	fermion-loop scheme, effective Lagrangians, etc.
	see e.g. LEP2 MC workshop report CERN-2000-09-A, hep-ph/0005309

Workshop "QCD und Elektroschwache Physik am LHC", Karlsruhe, März 2006

EW corrections to gauge-boson pair production

- $pp(\rightarrow W\gamma) \rightarrow l\bar{\nu}\gamma + X$ Accomando, Denner, Pozzorini '01 $\mathcal{O}(\alpha)$ correction in high-energy and pole approximations $\hookrightarrow \delta \sim -5\% (-24\%)$ for $p_{T,\gamma} \gtrsim 350 \,\text{GeV} (700 \,\text{GeV})$
- $pp \rightarrow Z\gamma + X$ Hollik, Meier '04 complete $\mathcal{O}(\alpha)$ correction for on-shell Z bosons $\hookrightarrow \delta \sim -20\%$ for $M_{\gamma Z} \lesssim 2 \text{ TeV}$ pp
- $pp(\rightarrow WW, WZ, ZZ) \rightarrow 4 leptons + X$ Accomando, Denner, Pozzorini '01 Accomando, Denner, Kaiser '04
 - $\mathcal{O}(\alpha)$ correction in high-energy and pole approximations

EW corrections vs. anomalous TGCs in gauge-boson pair production

Recent study for $pp(\rightarrow WW, WZ) \rightarrow 4 leptons + X$ Accomando, Kaiser '05

Note: in general both corrections and anomalous couplings distort distributions

4.2 Gauge-boson + jet production

EW corrections

- pp \rightarrow V + jet + X (V = γ , Z)
 - $\diamond\, \operatorname{weak}\, \mathcal{O}(\alpha)$ correction

Maina, Moretti, Ross '04

 $\delta_{\rm weak}~\sim~-(5{-}15)\%$ for $p_{\rm T}\lesssim 500\,{\rm GeV}$

◊ (NLO + NNLL) EW corrections

Kühn, Kulesza, Pozzorini, Schulze '04,'05

• $pp \rightarrow W + jet + X$ no results on EW corrections yet

4.3 Gauge-boson scattering

Physics issues:

link to Higgs production:

vector-boson fusion with subsequent decay ${\rm H} \rightarrow {\rm WW}/{\rm ZZ} \rightarrow 4f$

- triple and quartic gauge-boson self-interaction
 - $\hookrightarrow\,$ high sensitivity, but again ambiguities from formfactors
- V_LV_L → V_LV_L: strong sensitivity of to details of electroweak symmetry breaking if no Higgs exists → unitarity requires scalar and vector resonances However:
 - description of resonances is "ad hoc" (different "unitarization models")
 - \hookrightarrow large ambiguities
 - many (more qualitative) studies show that LHC could see the resonances

Comments and questions from a theorist

- Approximations made in previous predictions
 - 1. no QCD corrections
 - 2. "effective vector-boson approximation" (EVA) almost always used (~ Weizsäcker–Williams)
 - 3. equivalence theorem (ET) sometimes used (i.e. $V_L \sim$ Goldstone boson)
 - 4. no EW corrections (some partial results on $VV \rightarrow VV$ known)

Each of these approximations induces uncertainties of several 10%!

- \hookrightarrow Only order of magnitude of cross sections known
- Note: improvement on 1.–3. straightforward (but hard work), improvement on 4. not straightforward (approximations?!)
- Situation in SM-like scenario: (i.e. no resonances apart from Higgs) cross sections small; large background from qq̄ annihilation
 → What can still be measured and how precisely ?
- Case with low background: like-sign W-pair production (→ μ⁺μ⁺ + missing p_T)
 → How promising is this channel ?

A step towards cleaner predictions

PHASE = a Monte Carlo generator employing full $2 \rightarrow 6$ matrix elements

- no ET, no EVA
 Accomando, Ballestrero, Bolognesi, Maina, Mariotti '05
- no QCD and EW corrections

Comparison of different approaches:

example: processes containing $VW \rightarrow VW$ with $M_{\rm H} = 500 \, {\rm GeV}$

Phase:	all EW $2 \rightarrow 6$ diagrams, no EVA, no ET, but no QCD diagrams
Pythia:	only EVA with longitudinal vector bosons
Madevent:	no EVA, but on-shell approximation for produced VW pair

- 5 Electroweak issues in heavy-quark and jet production
- 5.1 Heavy-quark pair production

Physics goals:

- more precise measurement of $m_{
 m t}$ \rightarrow crucial for EW precision tests
- top-spin physics
 - $\hookrightarrow\,$ careful inclusion of decays with spin correlations
- processes with additional jets or EW gauge bosons:
 - $\diamond~{\rm t\bar{t}}\gamma$ / ${\rm t\bar{t}Z}$ production: direct verification of $Q_{\rm t}$, $v_{\rm t}$ and $a_{\rm t}$
 - $\circ t\bar{t}(+jet/\gamma/Z)$ important background processes to searches, e.g. to $t\bar{t}H$ Note: neither QCD nor EW corrections known to this process type yet

EW corrections to heavy-quark production

- $pp \rightarrow t\bar{t} + X$
 - \circ weak $\mathcal{O}(\alpha)$ correction to σ_{tot} $\delta_{weak} \sim a \text{ few }\%$ Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth '94
 - \diamond weak $O(\alpha)$ correction to σ_{tot} in THDM and MSSM _{Hollik, Mösle, Wackeroth '97} $\delta_{weak} \lesssim 10\%$

Note:

5.2

EW corrections

EW corrections δ would be partially compensated by real W and Z radiation !

0.5

0.0

1000

 \hookrightarrow sensitivity to jet definition

Jet pair production

solid: NLO weak

3000

dashed: NLO weak (qq)

jet-production ($|\eta| < 2.5$)

2000

 E_{T} (GeV)

CTEQ6L1,

μ $E_T/2$

4000

6 Conceptual and technical issues — the current frontier

- Structure of EW corrections at high energies
 - ◇ 1-loop structure completely known, 2-loop structure partially known
 - ◊ resummation procedure suggested, but not rigorously proven
- Consistent description of corrections to resonance processes
 - ◊ pole expansions either via explicit matrix elements or effective field theories
 - \diamond "complex-mass scheme" suggested and applied to $ee \rightarrow WW \rightarrow 4f$ at one loop
- Monte Carlo techniques for many-particle processes
 - ◊ fast evaluation of matrix elements (spinor versus recursion techniques)
 - ◇ multi-channel Monte Carlo integration (generic approach, automatization)
 - * matching of matrix element calculations and parton showers at NLO

• Loop techniques for multi-leg processes

- Passarino–Veltman reduction fails in presence of small Gram determinants
 - \hookrightarrow expansion or semi-numerical methods in problematic regions
- $^{\diamond}~2 \rightarrow 4$ processes is current frontier at one loop (ee $\rightarrow 4f$, ee $\rightarrow \nu\nu$ HH)

NNLO calculations

- $^{\diamond}$ EW corrections to decays or vertex corrections ($M_{
 m W}$, $\sin^2 heta_{
 m eff}^{
 m lept}$, gg
 ightarrow H)
- $\diamond~$ 2-loop amplitudes for massless $2 \rightarrow 2$ and $1 \rightarrow 3$ with one off-shell leg known
- subtraction techniques for evaluation of real corrections in progress

7 Conclusions

Electroweak physics at the LHC — final comments and some open questions

- Higgs physics
 - \hookrightarrow a subject of its own (not considered in this talk)
- Precision studies of Drell–Yan processes
 - ◊ Are EW NNLO corrections needed ?
- Gauge-boson self-interaction
 - vuse full matrix-element calculations as far as possible !
 - $\diamond\,$ How well can $\mathrm{VV} \to \mathrm{VV}$ be measured in SM-like case ?
- Studies at high scales (searches, etc.)
 - approximations for EW corrections beyond NLO ?
- General issues
 - combination of EW and QCD corrections (not even done for Drell-Yan)
 - EW effects in PDFs (relevance of photon PDF?)
 - thorough estimates of theoretical uncertainties !

