QCD Studies at the LHC

Thomas Gehrmann

Universität Zürich

QCD and Electroweak Physics Working Group

QCD Studies at the LHC - p.1

Contents

Exploiting QCD Observables at LHC

- Precision measurements
- Determination of auxiliary quantities
- Input to new physics searches

Precision Measurements

 QCD is experimentally well established
 QCD is now precision physics
 LEP precision physics: Electroweak processes
 Tevatron/LHC precision physics: QCD processes

Precision Measurements

Precise determination of

- strong coupling constant
- quark masses (→ Top working group)
- electroweak parameters ($\rightarrow EW$)

Precision observables

- single jet inclusive cross section
- gauge boson prouction

Single jet inclusive cross section at Tevatron

precision determination of α_s

 $\alpha_s^{\text{CDF}}(M_Z) = 0.1178 \pm 0.0001(\text{stat})^{+0.0081}_{-0.0095}(\text{sys}) \, \frac{+0.0071}{-0.0047}(\text{scale}) \pm 0.0059(\text{pdf})$

Single jet inclusive cross section at LHC

- requires only central jets -1 < y < 1
- measureable to $E_T = 3$ TeV at low luminosity
- extraction of α_s limited by theory (NLO at present) and experimental systematics

Jet algorithms

two types of jet algorithms for hadron colliders

- Cone algorithms
 - **•** attribute all hadronic energy inside a cone in $(\eta \phi)$ to a given jet
 - define procedures for finding cone axis and for splitting/merging nearby jets
 - 🔎 🕂 intuitive
 - A appropriate for reconstructing heavy particles, e.g. top quark
 - theoretical description of splitting/merging not always possible
 - sometimes large hadronization corrections
- k_T algorithms
 - recombine particles into jets using an iterative procedure on particle pairs
 - + theoretically unproblematic

 - small hadronization corrections
 - application time-consuming
 - not appropriate for reconstruction of resonances

Jet algorithms

k_T -algorithm

CDF Collaboration K_T D=0.7 0.1<|y^{JET}|<0.7 Data Systematic errors NLO: JETRAD CTEQ6.1M corrected to hadron level $\mu_{\text{R}} = \mu_{\text{F}} = max \ p_{\text{T}}^{\text{JET}} \ / \ 2 = \mu_{0}$ $L = 385 \text{ pb}^{-1}$ 10⁻⁸ 700 100 200 300 400 500 600 0 p_{T}^{JET} [GeV/c]

Cone algorithm

CDF Collaboration

Event shapes

- characterize event by event shape variable $\{p_n\} \rightarrow T$
- Intensively studied in e^+e^- annihilation
- **9** may be used to determine $lpha_s$
- theoretically well understood
- most common example: Thrust

at present: only poorly studied at Tevatron, certainly still potential for precise measurements here

Heavy quark jets

- study jet shape $\Phi(r)$ (fraction of jet energy in a sub-cone)
- expect different $\Phi(r)$ for quark and gluon jets
- expect different $\Phi(r)$ for massive and massless quark jets
- first data soon

CDF: Thesis A. Lister (ETH)

could be used as additional information in *b*-tagging

Tasks for Jet Production

Theory

- current NLO theory clearly insufficient for precision measurements
- compute NNLO corrections
- improve jet algorithms
- find most appropriate event shape variables for precision studies

Experiment

- understand systematic uncertainties in jet production at LHC
- study feasibility of measuring α_s from jets
- jet algorithms for LHC

Vector Boson Production

Inclusive cross section

- can be measured precisely
- are theoretically well understood
 - NNLO corrections known
 - relevant partons well constrained
- benchmark reaction for LHC (luminosity monitor?)

Rapidity distribution

A. Martin, J. Stirling, R. Roberts, R. Thorne

Vector Boson Production

Vector boson plus jet production

- influences kinematical event reconstruction of inclusive vector boson production (e.g. transverse mass of W^{\pm})
- is background to new physics searches
- for example: top quark discovery CDF collaboration

cross sections for V + n jets currently known to NNLO for n = 0, to NLO for $n \le 2$, and LO otherwise

QCD Studies at the LHC - p.13

Photon Production

Two production processes for photons

direct

fragmentation

Photons never fully isolated from hadrons

- isolation cone: $E^{had} < E^{isol}$ for $R < R^{isol}$
- Cluster photon into jet: $E^{\gamma} > z_{
 m cut} E^{
 m jet}$

Both isolation criteria

are infrared safe

induce contribution from non-perturbative quark-to-photon fragmentation function

Cone-based isolation fails for small cones:

S. Catani, M. Fontannaz, J.P. Guillet, E. Pilon

 $\sigma^{\rm isol} > \sigma^{\rm incl}$ for $R \le 0.1$ $(\alpha_s \ln R^{-2} \sim 1)$

Photon Production

- P photon identification: need to distinguish photons from neutral mesons decaying into photon pairs: π^0, η, \ldots
- purity and efficiency of photon identification energy-dependent
- photon isolation helps to distinguish photons from neutral mesons, but can seriously affect photon production cross section

Tasks for Gauge Bosons

Theory

- compute NNLO corrections where needed for precision measurements: e.g. V + 1j
- compute NLO corrections for gauge boson plus multi-jet final states

Experiment

- estimate systematic uncertainties for vector boson production (inclusive or in association with jets)
- reality check of photon isolation and photon identification

Auxiliary Quantities

Theoretical prediction and interpretation of LHC results relies on

- parton distributions
- LHC collider luminosity

Can be extracted from QCD measurements

Partons

LHC parton kinematics

Partons

Measuring parton distributions at LHC

Gluon distribution at large x

- \checkmark jet production at large E_T
 - (photon production at large E_T)
 - (heavy quark production at large E_T)

Parton distributions at very small x

- low-mass Drell-Yan pairs at very large rapidity \rightarrow relevant for UHE neutrino and cosmic ray interactions
- mini-jet activity at very large rapidity

Tasks for Partons

Theory

- improve consistency of global fits by computing NNLO corrections to all relevant observables (especially jet production)
- treatment of errors on parton distributions (error propagation, correlated uncertainties)
- electroweak effects on parton distributions

Experiment

- sensitivity of high- E_T jet production on gluon distribution
- feasibility of measurements at very large rapidity

LHC luminosity

Luminosity required for all absolute cross section measurements

Tevatron luminosity

- from $p\bar{p} \rightarrow X$ inclusive cross section (forward detectors)
- experimentally difficult
- theory uncertain (extrapolation from lower energies)

Proposal for LHC (M. Dittmar, F. Pauss, D. Zürcher)

- \square use $pp \rightarrow W^{\pm}, Z^0$ (over limited rapidity coverage)
- theoretically well understood (NNLO)
- relevant parton distributions well constrained
- experimentally clean measurement

Searching New Physics

Requirements for searches

fully differential description of expected signal and standard model background

- design and optimize cuts
- estabilsh observation of signal as opposed to background fluctuation
- signal: need to understand production mechanisms and decay signatures
- background: need to describe final states with many jets and vector bosons, heavy quarks

Tools for searches

- multi-purpose leading order event generators (\longrightarrow talk by S. Höche)
- leading order predictions for final states with many particles often insufficient
 - several scales in hard process \longrightarrow overall normalization ($\sim \alpha_s^n(\mu_f)$) very uncertain
 - extra radiation from higher order contributions can modify kinematical distributions and affect cuts

Searching New Physics

Better background estimates

extrapolation of measured background cross sections in signal regions

- feasible if signal is a clean peak
- difficult if signal is a broad enhancement over a smooth background
 N. Kauer

combination of NLO calculations and parton showers MC@NLO: S. Frixione, B. Webber Z. Nagy, D. Soper W. Giele, D. Kosower, P. Skands

automated approaches to NLO calculations
A. Denner, S. Dittmaier; K. Ellis, W. Giele, G. Zanderighi;
T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert;
F. Boudjema, Y. Kurihara (GRACE collaboration);
A. van Hameren, J. Vollinga, S. Weinzierl;
Z. Nagy, D. Soper; C. Anastasiou, A. Daleo

Tasks for Searches

Theory

- be prepared for precise computation of multi-particle final states
- and to provide error estimates on these

Experiment

- verify search tools (e.g. particle finding algorithms) on Standard Model processes
- tune event generator programmes on first LHC data
- check data-based background extrapolation on non-trivial example reactions

Summary

QCD processes at LHC

- can be measured already with low luminosity
- allow precision measurements
- determine parton distributions and LHC luminosity

Implications of QCD studies

- demonstrate proper functioning of tools (jet algorithms, particle finding)
- detailed understanding mandatory for new physics searches

This workshop

- prepare QCD studies for the LHC startup phase
- identify most promising observables