EW/QCD Karlsruhe: Plans

2006^a

Frank Raupach

RWTH-Aachen

Physikalisches Institut Ib

Email:frank.raupach@cern.ch

March 8, 2006

^aInstitut Ib, RWTH-Aachen

1 Main tasks and activities

- Understanding of CMS detector with SM physics via W and Z bosons production through their leptonic decays
- How accurate can we measure the Z (W) cross sections or do we have high-precision luminosity monitors from hard scattering processes of the partons inside the protons?

Example:	$Z ightarrow \mu \mu,$	$\sigma_{\mu\mu} \simeq 1.865 nb,$	$\epsilon_{total} \approx 0.5$
----------	--------------------------	-------------------------------------	--------------------------------

Luminosität	${\sf L} \left[cm^{-2} s^{-1} ight]$	N per day	N per year
very low	310^{28}	≈ 3	≈ 832
low	210^{31}	≈ 1600	$pprox 0.610^6$
startup	110^{33}	$pprox 0.810^5$	$\approx 310^7$

Use for tracker and muon system alignment and calorimeter calibration. Z events are setting the lepton energy and lepton momentum scales.

2 Strategy e.g. for $p \, p \to Z/\gamma \to \mu^+ \, \mu^-$

$$\sigma\left(pp \to Z/\gamma \to \mu^{+}\mu^{-}\right) = \frac{N_{cand} \left(1 - f_{bb} - f_{cosmics}\right) \left(1 - f_{\tau\tau}\right) \left(1 - f_{W \to \mu\nu}\right)}{\epsilon_{total} \int L \, dt}$$
(1)

 f_i : Fraction of candidate evts attributed to $b \overline{b}$, cosmic μ , $Z \to \tau \tau$, and $W \to \mu \nu$. ϵ_{total} : Eff. of selection cuts and det. acceptance.

Background:

- f_{bb} from data (e.g # of like sign μ events)
- *f_{cosmics}* from data (e.g. time info !?)
- $f_{W \to \mu \nu}$ from data (e.g. # cand. evts with more than one μ)
- $f_{\tau\tau}$ difficult (e.g. from MC) but small !?
- ϵ from data (tracking-, μ identification-, and trigger efficiency...)

 $\epsilon_{total} = \epsilon_{MC}^{eff} \epsilon_{other}$

For ϵ_{MC}^{eff} model and PDFs ! Currently using MC@NLO (Frixione, Webber) with full CMS detector simulation.

Similiar analysis for $\sigma (pp \rightarrow W \rightarrow \mu \mu)$ Other final states e.g. $e^+ e^-$. MC@NLO computes all NLO diagrams before starting the shower

. .

...use Herwig for showering...do full CMS-Detector

3 Near Future

- Starting point: MC@NLO+Herwig+Full Detector MC
- Next: Study cross sections for W and Z production for different PDFs to get rid of uncertainties. Use W and Z-bosons events simultaneously to determine the luminosity.
- Try to get a second NLO generator or check single amplitudes in MC@NLO
- Currently 1-2 FTE