

Particle Physics Theory at the RWTH Aachen

- Staff: Martin Beneke, Werner Bernreuther, Michael Krämer
- Postdocs: Peter Fischer, Sebastian Jäger, Yuichiro Kiyo, Alexander Mück, Christian Schwinn, (Stefan Berge, Tania Robens, Tobias Huber).
- + approx. 10 PhD/Diploma students

Particle Physics Theory at the RWTH Aachen

- Staff: Martin Beneke, Werner Bernreuther, Michael Krämer
- Postdocs: Peter Fischer, Sebastian Jäger, Yuichiro Kiyo, Alexander Mück, Christian Schwinn, (Stefan Berge, Tania Robens, Tobias Huber).
- + approx. 10 PhD/Diploma students

Theorie Group ist part of the

- Graduiertenkolleg "Elementarteilchenphysik an der TeV-Skala"
- SFB TR9 Computergestützte Theoretische Teilchenphysik (with Karlsruhe, HU Berlin and NIC/DESY Zeuthen)

Beneke

- *B*-physics: QCD factorization, penguin decays, power corrections,...
- EFT approach to unstable particle production: expansions in powers of α and Γ/M ;
- Top-production at threshold: third-order Coulomb corrections;
- SCET, renormalons, ...

Beneke

- *B*-physics: QCD factorization, penguin decays, power corrections,...
- EFT approach to unstable particle production: expansions in powers of α and Γ/M ;
- Top-production at threshold: third-order Coulomb corrections;
- SCET, renormalons, ...

Bernreuther

- Top-quark production and decay at the LHC: NLO QCD & EW corrections, spin correlations;
- Top-quark production at e^+e^- colliders: NNLO QCD corrections to form factors;
- Higgs-physics: production and decay of heavy Higgs bosons;

Beneke

- *B*-physics: QCD factorization, penguin decays, power corrections,...
- EFT approach to unstable particle production: expansions in powers of α and Γ/M ;
- Top-production at threshold: third-order Coulomb corrections;
- SCET, renormalons, ...

Bernreuther

- Top-quark production and decay at the LHC: NLO QCD & EW corrections, spin correlations;
- Top-quark production at e^+e^- colliders: NNLO QCD corrections to form factors;
- Higgs-physics: production and decay of heavy Higgs bosons;

Krämer

- Higgs & SUSY particle production: (SUSY)-QCD corrections
- Gauge boson production: electroweak corrections
- NLO-QCD calculations with parton showers

- **Fischer:** quantum gravity with RGE methods
- Jäger: SUSY GUTs and flavour physics
- Kiyo: Top-mass determination
- Mück: 5-D orbifold theories
- Schwinn: new calculation techniques for multi-leg amplitudes

● N^kLO calculations

- + allow precision test of QFTs
- break down for certain kinematic configurations
- do not provide realistic final states
- are limited to IR safe observables

● N^kLO calculations

- + allow precision test of QFTs
- break down for certain kinematic configurations
- do not provide realistic final states
- are limited to IR safe observables

Parton shower Monte Carlo programs

- + include certain summations
 (soft/collinear emissio ns)
- + provide realistic final states
- do not include hard emissions
- are based on LO perturbation theory

N^kLO calculations

- + allow precision test of QFTs
- break down for certain kinematic configurations
- do not provide realistic final states
- are limited to IR safe observables

Parton shower Monte Carlo programs

- + include certain summations
 (soft/collinear emissio ns)
- + provide realistic final states
- do not include hard emissions
- are based on LO perturbation theory

Aim: Perform NLO calculations with (LL) summation of soft/collinear logarithms and realistic hadronic final states

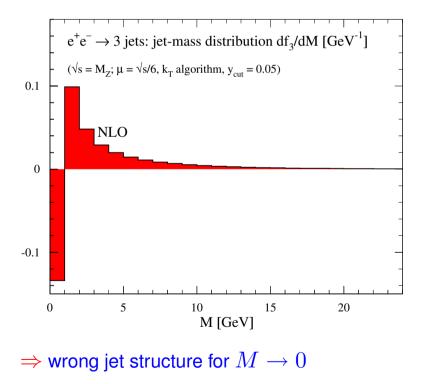
 \Rightarrow match NLO calculations with parton shower Monte Carlo programs

Problem of double counting:

parton showers include part of the short-distance physics already included in NLO calculations

See also work by Frixione, Nason, Webber

NLO calculations with parton showers

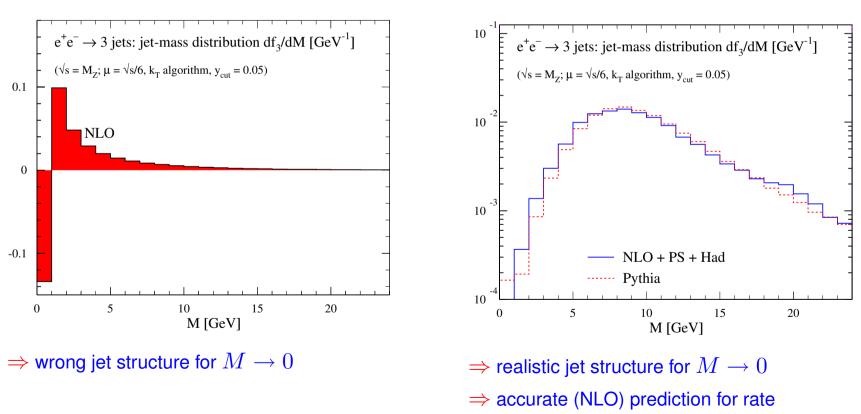

Examine df_3/dM where f_3 is the fraction of events that have three jets and M is the mass of a jet (Durham algorithm, $y_{cut} = 0.05$)

NLO calculations with parton showers

• Consider event shape variables in $e^+e^- \rightarrow 3$ jets

Examine df_3/dM where f_3 is the fraction of events that have three jets and M is the mass of a jet (Durham algorithm, $y_{cut} = 0.05$)

NLO calculation



NLO calculations with parton showers

• Consider event shape variables in $e^+e^- \rightarrow 3$ jets

Examine df_3/dM where f_3 is the fraction of events that have three jets and M is the mass of a jet (Durham algorithm, $y_{cut} = 0.05$)

NLO ⊕Pythia

NLO calculation