

Electroweak Corrections to single W production at the LHC: an update

Michael Krämer

(RWTH Aachen)

- QED effects in PDFs and photon induced processes
- A tuned comparison of various calculations
- Outlook

work in collaboration with Stefan Dittmaier

Single W-boson production at hadron colliders

 ${}_{ullet}$ measurement of M_W and Γ_W

 \rightarrow precision test of SM

Single W-boson production at hadron colliders

 ${}_{ullet}$ measurement of M_W and Γ_W

 \rightarrow precision test of SM

 $\mathbf{I} \boldsymbol{\sigma}_{W}$ as a (parton) luminosity monitor

[Dittmar, Pauss, Zürcher]

e.g.
$$\delta \; \frac{\sigma(pp \to W^+W^-)}{\sigma(pp \to W^\pm)} \lesssim 1\%$$

Single W-boson production at hadron colliders

 ${\ensuremath{{\rm J}}}$ measurement of M_W and Γ_W

 \rightarrow precision test of SM

 ${}$ ${}$ σ_W as a (parton) luminosity monitor

[Dittmar, Pauss, Zürcher]

e.g.
$$\delta \frac{\sigma(pp \to W^+W^-)}{\sigma(pp \to W^{\pm})} \lesssim 1\%$$

Anticipated experimental accuracy:

uncertainty	now	Tevatron Run II	LHC
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	17	78	14-20
δM_W [MeV]	34	27	15
δm_t [GeV]	5.1	2.7	1.0
$\delta M_H/M_H$ [%] (from all data)	58	35	18

[see e.g. Wackeroth, ESF/IPPP workshop Durham '03]

\Rightarrow Precision calculations required

QCD radiative corrections

- NNLO predictions for total cross section and rapidity distribution
 [Hamberg, van Neerven, Matsuura '91; Harlander, Kilg ore '02; Anastasiou, Dixon, Melnikov, Petriello '03]
- soft gluon resummation for transverse momentum distribution [Balazs, Yuan '97]

QCD radiative corrections

- NNLO predictions for total cross section and rapidity distribution
 [Hamberg, van Neerven, Matsuura '91; Harlander, Kilg ore '02; Anastasiou, Dixon, Melnikov, Petriello '03]
- soft gluon resummation for transverse momentum distribution [Balazs, Yuan '97]

Electroweak radiative corrections

- final state photon radiation [Berends, Kleiss '85]
- $-\mathcal{O}(lpha)$ corrections to resonant W production [Hollik, Wackeroth '97; Baur, Keller, Wackeroth '99]
- real two-photon radiation [Baur, Stelzer '00]
- complete $\mathcal{O}(\alpha)$ corrections [Dittmaier, MK '01; Zykunov et al. '01; Baur, Wackeroth '04]
- multiple final state photon radiation [Placzek, Jadach '03; Carloni Calame, Montagna, Nicrosini '03]

virtual one-loop corrections

photon radiation

Single W-boson production: electroweak corrections

mass singularities

QED initial state collinear singularities are universal \rightarrow can be absorbed into pdfs

Single W-boson production: electroweak corrections

mass singularities

QED initial state collinear singularities are universal \rightarrow can be absorbed into pdfs

Mass factorization:

[Baur, Keller, Wackeroth; Dittmaier, MK, Diener, Dittmaier, Hollik]

$$q(x) \rightarrow q(x, M^2) - \int_x^1 \frac{dz}{z} q\left(\frac{x}{z}, M^2\right) \frac{\alpha}{2\pi} Q_q^2$$
$$\times \left\{ \ln\left(\frac{M^2}{m_q^2}\right) \left[P_{ff}(z)\right]_+ - \left[P_{ff}(z)\left(2\ln(1-z)+1\right)\right]_+ + C(z) \right\}$$

where

$$C(z) = \begin{cases} 0 & \overline{\text{MS}} \\ \left[P_{ff}(z) \left(\ln \left(\frac{1-z}{z} \right) - \frac{3}{4} \right) + \frac{9+5z}{4} \right]_{+} & \text{DIS} \end{cases}$$

- → effect of QED evolution and corrections on quark & gluons pdfs is small [see also Kripfganz, Perlt; Blümlein, Spiesberger, Roth, Weinzierl]
- \rightarrow dynamic generation of photon parton distribution
- → MRST pdfs are defined in the DIS QED factorization scheme [Diener, Dittmaier, Hollik]

for experimental identification require phase space cuts:

 $p_{\mathrm{T},l} > 25 \ \mathrm{GeV}, \quad p_{\mathrm{T}} > 25 \ \mathrm{GeV}, \quad |\eta_l| < 1.2$

assume perfect isolation of photon from charged lepton

ightarrow not collinear safe: sensitive to mass singular terms $lpha \ln(m_l/M_W)$

for experimental identification require phase space cuts:

assume perfect isolation of photon from charged lepton

ightarrow not collinear safe: sensitive to mass singular terms $lpha \ln(m_l/M_W)$

 \checkmark more realistic: recombine e and γ momenta:

- \rightarrow form inclusive quantity
- ightarrow mass singular terms $lpha \ln(m_l/M_W)$ cancel (KLN)

for experimental identification require phase space cuts:

assume perfect isolation of photon from charged lepton

 \rightarrow not collinear safe: sensitive to mass singular terms $\alpha \ln(m_l/M_W)$

• more realistic: recombine e and γ momenta:

- \rightarrow form inclusive quantity
- ightarrow mass singular terms $lpha \ln(m_l/M_W)$ cancel (KLN)

specifically:

- 1. Photons with a rapidity $|\eta_{\gamma}| > 2.5$, which are close to the beams, are treated as invisible, i.e. they are considered as part of the proton remnant.
- 2. If the photon survived the first step, and if the resolution $R_{l\gamma} = \sqrt{(\eta_l \eta_\gamma)^2 + \phi_{l\gamma}^2}$ is smaller than 0.1 (with $\phi_{l\gamma}$ denoting the angle between lepton and photon in the transverse plane), then the photon is recombined with the charged lepton, i.e. the momenta of the photon and the lepton l are added and associated with the momentum of l, and the photon is discarded.

[Dittmaier, MK]

$p_{\mathrm{T},l}/\mathrm{GeV}$	25–∞	50– ∞	100–∞	200– ∞	500– ∞	1000–∞
$\delta_{\mathrm{e^+} u_\mathrm{e}}/\%$	-5.19(1)	-8.92(3)	-11.47(2)	-16.01(2)	-26.35(1)	-37.92(1)
$\delta_{\mu^+ u_\mu}/\%$	-2.75(1)	-4.78(3)	-8.19(2)	-12.71(2)	-22.64(1)	-33.54(2)
$\delta_{ m rec}/\%$	-1.73(1)	-2.45(3)	-5.91(2)	-9.99(2)	-18.95(1)	-28.60(1)

Numerical results: photon-induced processes

[Dittmaier, MK]

• Numerical results: photon-induced processes

[Dittmaier, MK]

$p_{\mathrm{T},l}/\mathrm{GeV}$	25–∞	50– ∞	100– ∞	200– ∞	500– ∞	1000–∞
$\delta_{\mathrm{e}^+ u_\mathrm{e}} / \%$	-5.19(1)	-8.92(3)	-11.47(2)	-16.01(2)	-26.35(1)	-37.92(1)
$\delta_{\mu^+ u_\mu}/\%$	-2.75(1)	-4.78(3)	-8.19(2)	-12.71(2)	-22.64(1)	-33.54(2)
$\delta_{ m rec}/\%$	-1.73(1)	-2.45(3)	-5.91(2)	-9.99(2)	-18.95(1)	-28.60(1)
$\delta_{\gamma q}/\%$	+0.071(1)	+5.24(1)	+13.10(1)	+16.44(2)	+14.30(1)	+11.89(1)

 \rightarrow large corrections due to photon-induced process

 \rightarrow but: $p_{\mathrm{T},l}$ distribution very sensitive to QCD effects

Single W-boson production at the LHC: a tuned comparison

P HORACE : complete $\mathcal{O}(\alpha)$ corrections or parton shower photon emssion;

[Carloni Calame, Montagna, Nicrosini, Treccani]

SANC: complete $\mathcal{O}(\alpha)$ corrections;

[Andonov, Arbuzov, Bardin, Bondarenko, Christova, Kalinovskaya, Nanava, von Schlippe]

• WGRAD: complete $\mathcal{O}(\alpha)$ corrections;

[Baur, Keller, Wackeroth]

DITTMALER-KRÄMER: complete $\mathcal{O}(\alpha)$ corrections, photon induced processes

Single W-boson production at the LHC: a tuned comparison

		I I	, (
$p_{\mathrm{T},l}/\mathrm{GeV}$	25–∞	50–∞	100–∞	200–∞	500–∞	1000–∞
$\delta_{\mathrm{e^+} u_\mathrm{e}}/\%$						
Dĸ	-5.19(1)	-8.92(3)	-11.47(2)	-16.01(2)	-26.35(1)	-37.92(1)
HORACE	-5.23(1)	-8.98(1)	-11.49(1)	-16.03(1)	-26.36(1)	-37.92(2)
WGRAD	-5.10(1)	-8.55(5)	-11.32(1)	-15.91(2)	-26.1(1)	-38.2(2)
$\delta_{\mu^+ u_\mu}/\%$						
Dκ	-2.75(1)	-4.78(3)	-8.19(2)	-12.71(2)	-22.64(1)	-33.54(2)
Horace	-2.79(1)	-4.84(1)	-8.21(1)	-12.73(1)	-22.65(1)	-33.57(1)
SANC	-2.80(1)	-4.82(2)	-8.17(2)	-12.67(2)	-22.63(2)	-33.50(2)
WGRAD	-2.69(1)	-4.53(1)	-8.12(1)	-12.68(1)	-22.62(2)	
$\delta_{ m recomb}/\%$						
Dκ	-1.73(1)	-2.45(3)	-5.91(2)	-9.99(2)	-18.95(1)	-28.60(1)
HORACE	-1.77(1)	-2.51(1)	-5.94(1)	-10.02(1)	-18.96(1)	-28.65(1)
SANC	-1.89(1)	-2.56(1)	-5.97(1)	-10.02(1)	-18.96(1)	-28.61(1)
Wgrad	-1.71(1)	-2.32(1)	-5.94(1)	-10.11(2)	-19.08(3)	

 $\mathrm{pp} \rightarrow \nu_l l^+ (+\gamma)$ at $\sqrt{s} = 14 \,\mathrm{TeV}$

Single W-boson production at the LHC: a tuned comparison

Single W-boson production at the LHC: outlook

tuned comparison to be continued and extended

further improve level of agreement; investigate more distributions; study Z-production

need summation of multiple-photon emission

[Placzek, Jadach; Carloni Calame, Montagna, Nicrosini, Treccani]

 \rightarrow combination of full $\mathcal{O}(\alpha)$ calculation and multiple photon emission

summation of Sudakov-logarithms

[Beenakker et al.; Kühn, Penin; Denner, Pozzorini,...]

• EW calculations for W, Z production in association with jets

[Maina, Moretti, Ross; Kühn, Kulesza, Pozzorini, Schulze; Hollik, Meier; Accomando, Denner, Meier]

need to combine strong and electroweak higher-order effects [Cao, Yuan]