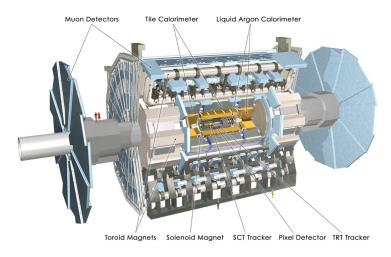
The DESY ATLAS Group (I)

Kerstin Tackmann

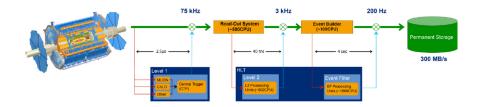

DESY

Experimental Particle Physics at DESY – Summer Student Colloquium Hamburg – August 24, 2011

The ATLAS Detector at the LHC

- Multi-purpose detector collecting data at the LHC in Geneva
- pp collisions at $\sqrt{s} = 7 \,\mathrm{TeV}$

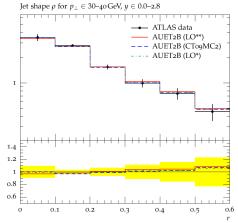
DESY Is Involved in All Aspects at ATLAS


Many steps to get the final physics results

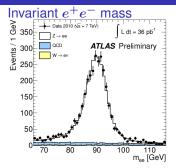
- → Detector development and simulation ★ Ingrid will tell you about this part!
- \rightarrow Operating and monitoring the detector
 - ★ Ingrid will tell you about this part, too!
- → Triggering the interesting events
- → Processing the data
- \rightarrow Calibrating the detector
- \rightarrow Simulating physics processes and the detector
- → Analyzing the data to get physics results
 - ★ DESY works on several topics: Higgs, SUSY, Standard Model, top

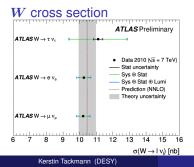
Will focus on activities in Hamburg (there's more in Zeuthen!)

ATLAS Trigger


- $\bullet\,$ LHC designed to collide proton bunches at 40 MHz, ATLAS can record data at 200 $-\,600\,Hz$
 - $\rightarrow\,$ Need very fast and reliable trigger system to pick the interesting physics events
- DESY is contributing to
 - * Trigger steering and configuration tools
 - * High-Level Trigger selection for electrons and photons

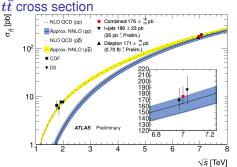
Monte Carlo Tuning

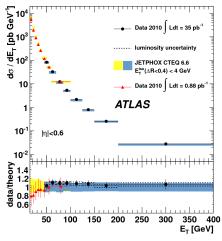

- Monte Carlo event generators need to be tuned to provide a good simulation of data
 - * Hadronic underlying event
 - ★ Jet properties
- ATLAS performs tuning of the Pythia and Herwig generators including ATLAS results, as well as results from the Tevatron and LEP experiments


Jet shape: data vs Monte Carlo

Standard Model: $Z ightarrow e^+e^-$ and W ightarrow au u

- Important milestone: Z cross section measurement with $Z \rightarrow e^+e^-$
 - Precision tests of different aspects of QCD
 - Electrons from Z crucial for detector studies

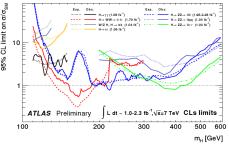



- First $W \rightarrow \tau \nu$ cross section measurement at LHC
- Excellent agreement with theoretical predictions
- Also important background for Higgs and SUSY searches with τ

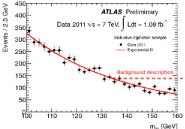
Top and Photon Production Cross Sections

Photon cross section

- $t\bar{t}$ reconstructed in 1-lepton and 2-lepton channel
- Test of perturbative QCD
- Important background for Higgs and New Physics searches



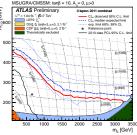
Precision tests for QCD

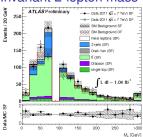

$H ightarrow \gamma \gamma$ Search

- Higgs boson searched for in various decay channels at ATLAS: $H \rightarrow W^+W^-, H \rightarrow ZZ,$ $H \rightarrow \gamma\gamma$ (DESY), $H \rightarrow b\overline{b},$ $H \rightarrow \tau^+\tau^-$
 - Already quite a large mass range excluded
- $H \rightarrow \gamma \gamma$ is important channel at low Higgs masses $110 \text{ GeV} < m_H < 150 \text{ GeV}$
- Observed exclusion limits in $H \rightarrow \gamma \gamma$ between 2 and $6 \times$ SM cross section

Higgs exclusion limits

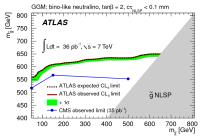
Diphoton invariant mass



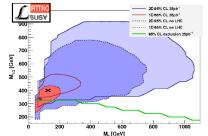

SUSY

Supersymmetric models predict existence of new particles, which are searched for in many different decay channels

- Jets and missing E_T (0-lepton channel)
 - → Tighter and tighter exclusion limits as we add data (so far)

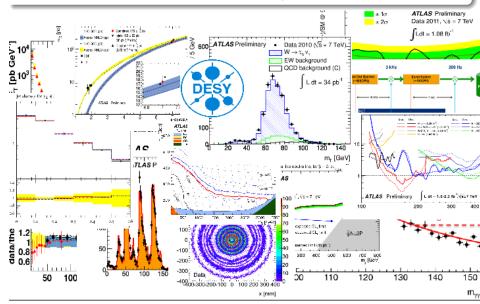

Invariant 2-lepton mass

- 2-lepton channel and missing E_T
 - → Looking for an excess of same-flavor dilepton events compared to opposite flavor events
- Also searches in 1-lepton channel and in 2-τ channel


SUSY

• Diphoton and missing E_T

- → Limits on gauge-mediated SUSY models
 - ★ Tightest existing limits even with the 2010 data


Gluino mass constraints from 2γ +MET

Invariant 2-lepton mass

- Fittino: global fit approach
 - ★ Combine constraints from precision measurements, astrophysics (dark matter) and exclusion limits from direct searches

New students are very welcome!

