HERMES: HERA MEASUREMENT OF SPIN The Spin of the Nucleon from HERMES point of view

Polina Kravchenko **Universität Erlangen-Nürnberg**

GPDs

Introduction

HERMES results

Conclusions

Experimental overview

longitudinal nucleon structure

$$S_{z} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma$$
Naïve Parton Model
SU_{spin}(2) × SU_{flavor}(3)
$$p\uparrow = \frac{1}{\sqrt{18}} \{u\uparrow u\uparrow d\downarrow \rangle - |u\uparrow u\downarrow d\uparrow \rangle - |u\downarrow u\uparrow d\uparrow \rangle + (u \Leftrightarrow d)\}$$

$$\Delta\Sigma = \Delta u + \Delta d = 1$$

$$\Delta d = \langle v\uparrow | N_{u\uparrow} - N_{u\downarrow} | v\uparrow \rangle = \frac{3}{18}(10-2) = \frac{4}{3}$$

$$\Delta d = \langle v\uparrow | N_{u\uparrow} - N_{u\downarrow} | v\uparrow \rangle = \frac{3}{18}(2-4) = -\frac{1}{3}$$

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma$$

In 1988 EMC measured:

$$\Gamma_{1}^{p} = \int_{0}^{1} g_{1}(x) dx = \frac{1}{2} \left\{ \frac{4}{9} \left(\Delta u + \Delta \overline{u} \right) + \frac{1}{9} \left(\Delta d + \Delta \overline{d} \right) + \frac{1}{9} \left(\Delta s + \Delta \overline{s} \right) \right\} = 0.114 \pm 0.012$$

Measurements of F_2 from HERA \longrightarrow Gluons are important!

Axial anomaly contribution:

The contribution of the quark spins $\Delta \Sigma$ is NOT an <u>observable</u>. The observable is \mathbf{a}_0 , the flavour-singlet axial vector.

$$\Delta q + \Delta \overline{q}$$

$$\Delta q + \Delta \overline{q} - \frac{\alpha_s}{2\pi} \Delta G$$

 $\gamma_{\mu}\gamma_{5}$

For full description the knowledge of orbital angular momentum is needed

Clean processes – no proton remnants
Separation light/heavy flavors
No flavor/charge separation
Access to flavor singlet D_Σ
Not precise at large z
Three-jet events qqgs
Gluon FF

Flavor/charge separation
Larger z, smaller Q²
Unpolarized PDFs very well
constrained from DIS
Gluon in DIS - a small NLO effect (PGF)
Dependence on PDFs

Very sensitive to D_g
 Large z
 Charge separation
 Several subprocesses
 Different p_⊥ scales

Principle of measurements

- Virtual photon can only couple to quarks of opposite helicity
- Select q⁻(x) or q⁺(x) by changing the orientation of target nucleon spin or helicity of incident lepton beam

Spin Independent Structure Function F₁

$$\sigma_{1/2} + \sigma_{3/2} \propto F_1(x) = \frac{1}{2} \sum_{i} e^2 (q^+(x) + q^-(x))$$

Spin Dependent Structure Function g₁

$$\sigma_{1/2} - \sigma_{3/2} \propto g_1(x) = \frac{1}{2} \sum_{f} e^2 (q^+(x) - q^-(x))$$

Virtual photon asymmetry:

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{g_{1}(x, Q^{2})}{F_{1}(x, Q^{2})}$$

Experimental essentials

asymmetry measurement

•Longitudinally polarized beam: electron, positron

•**Polarized target:** hydrogen, deuterium, helium3

•<u>Measurement with high accuracy:</u> incoming lepton energy

direction scattered lepton energy direction good identification in semi-inclusive case good particle identification

•<u>Control of false asymmetries:</u> beam flux, target size, detector size, detector efficiency

N - number of DIS events Pb, Pt - beam and target polarizations f - target dilution factor=polarizable N/total N D – depolarization factor (polarization transfer from polarized lepton to photon)

HERMES: longitudinally polarized lepton beam

HERA positron beam properties: • E_e=27.6GeV, I_e<50mA, P_b=0.55

- Ifetime=12-14h
- transversely polarized e± in storage ring
- oplarization build-up by emission
- of synchrotron radiation (Sokolov-Ternov effect)
- Spin rotators around HERMES IP

HERMES: gas target

Typical HERMES target properties :

- $P_t \sim 0.85$; polarized $H^{\uparrow \rightarrow}$, D^{\rightarrow}
- dilution factor=1
- Thickness = 10^{14} - 10^{15} nucl/cm²
- Temperature=100K

HERMES spectrometer

Tracking: Drift Vertex Chambers, Front Chambers, Magnet Chambers, Back Chambers

Particle Identification:

Čerenkov (RICH) Detector, Transition Radiation Detector, Preshower, Calorimeter Luminosity Monitor (Bhabha/Møller scattering)

- Deep-inelastic scattering (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering **cleanest way** to probe substructure of nucleon
- Exchange of virtual boson, breakup and hadronization in DIS regime

- Deep-inelastic scattering (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering cleanest way to probe substructure of nucleon
- Exchange of virtual boson, breakup and hadronization in DIS regime

- Deep-inelastic scattering (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering cleanest way to probe substructure of nucleon
- Exchange of virtual boson, breakup and hadronization in DIS regime

cross section

$$\sigma(l+N \rightarrow l'+h+X)$$

Factorization:

$$\sigma^{eN \to ehX} = \sum_{q} DF^{N \to q}(x) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z)$$

cross section

 $\sigma(l+N \rightarrow l' + h + X)$

Factorization:

Selection of constituents according to their distribution within the nucleon P DF

Photon hard scattering off the nucleon's constituents

Hadronization of the struck parton into the final hadron

cross section

 $\sigma(l+N \rightarrow l' + h + X)$

Factorization:

$$\sigma^{eN \to ehX} = \sum_{q} DF^{N \to q}(x) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z)$$

DF(x,Q²): Parton Distribution Functions q(x,Q²), Δq(x,Q²), δq(x,Q²)
σ: the hard-scattering cross section la→l/b (perturbative theory)
FF(z,Q²): Fragmentation Functions D₁(z,Q²), H₁[⊥](z,Q²),...

$$f_1^q(x) = q(x) \quad g_1^q(x) = \Delta q(x)$$

Inclusive DIS: polarized structure function g1

$$g_1(x,Q^2) = \frac{1}{1-\frac{y}{2}-\frac{1}{4}y^2\gamma} \left[\frac{Q^4}{8\pi\alpha^2 y} \frac{\partial^2\sigma_{unpol}}{\partial x\partial Q^2} A_{||}(x,Q^2) + \frac{y}{2}\gamma^2 g_2(x,Q^2)\right]^{\text{formula}}$$

Observable: inclusive double-spin asymmetry

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 (\Delta q + \Delta \bar{q})$$

Inclusive DIS: first moment Γ_1 and $\Delta\Sigma$

 $\Gamma_1^d = \int dx g_1^d(x)$

Use only deuteron data! Assuming saturation of $\Gamma_1^{d:}$

 $a_0 \stackrel{MS}{=} \Delta \Sigma = 0.330 \pm 0.025(exp) \pm 0.011(theory) \pm 0.028(evol)$

Method (LO):

Use correlation between detected hadron and struck quark \rightarrow 'Flavor separation'

flavour separation

$$\sigma(l+N \rightarrow l'+h+X)$$

Observable: semi-inclusive double-spin asymmetry

$$\begin{split} A_1^h(x,Q^2) &\stackrel{LO}{\sim} \frac{\sum_q e_q^2 \Delta q(x,Q^2) \int dz D_q^h(z,Q^2)}{\sum_q e_q^2 q(x,Q^2) \int dz D_q^h(z,Q^2)} \\ & \sim \sum_q \frac{e_q^2 q(x) \int dz D_q^h(z)}{\sum_{q'} e_{q'}^2 q' \int dz D_{q'}^h(z)} \cdot \frac{\Delta q(x)}{q(x)} \\ & \mathbf{P_q h} \qquad \mathbf{\Delta}/\mathbf{Q} \end{split}$$
Purity $\mathbf{P_q}^h$ (x,z) is conditional probability

that hadron of type h in the final state originated from a struck quark of flavour q

e'(E')

flavour separation

$$(A_{1p}^{\pi^+}, A_{1p}^{\pi^-}, \dots A_{1d}^{K^-}) \stackrel{\rightarrow}{\overrightarrow{A}} = P \cdot \overrightarrow{Q} \quad \left(\frac{\Delta u}{u}(x), \frac{\Delta d}{d}(x), \dots \frac{\Delta s}{s}(x)\right)$$

SU(3)_f symmetry implicitly assumed

u quark large positive polarization

• d quark negative polarization

sea quarks compatible with zero in measured x-range (0.023-0.6):

 $\Delta \bar{u} = -0.002 \pm 0.043$

$$\int \Delta \bar{d} = -0.054 \pm 0.035$$

$$\Delta s = +0.028 \pm 0.034$$

Direct measurement of **AG**

Mechanism: photon-gluon fusion (PGF). Observable: asymmetry in the hadron production.

 $\sigma(l + N \rightarrow h + X)$

- golden channel: charm production
- theoretically very clean
- experimentally very challenging

● at HERMES (√s=7 GeV hadron production at high P_T experimentally very clean

highly model dependent due to variety of background processes

transverse structure

Transverse-momentum-dependent (TMD) DF

$$\sigma(l+N \rightarrow l'+h+X)$$

$$\sigma^{eN \to ehX} \propto \sum_{q} DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

Observable: azimuthal asymmetries in SIDIS.

transverse structure

Transverse-momentum-dependent (TMD) DF

$$\sigma(l+N{\rightarrow}l^{'}+h+X)$$

$$\sigma^{eN \to ehX} \propto \sum_{q} DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

The SIDIS cross section up to twist-3

$$\begin{aligned} d\sigma &= \ d\sigma_{UU}^{0} + \cos(2\phi)d\sigma_{UU}^{1} + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^{2} + P_{l}\frac{1}{Q}\sin(\phi)d\sigma_{LU}^{3} \\ &+ S_{L}\Big[\sin(2\phi)d\sigma_{UL}^{4} + \frac{1}{Q}\sin(\phi)d\sigma_{UL}^{5} + P_{L}(d\sigma_{LL}^{6} + \frac{1}{Q}\sin(\phi)d\sigma_{LL}^{7})\Big] \\ &+ S_{T}\Big[\sin(\phi - \phi_{s})d\sigma_{UT}^{8} + \sin(\phi + \phi_{s})d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s})d\sigma_{UT}^{10} + \frac{1}{Q}\sin(2\phi - \phi_{s})d\sigma_{UT}^{11} + \frac{1}{Q}\sin(\phi_{s})d\sigma_{UT}^{12} + \frac{1}{Q}\cos(2\phi - \phi_{s})d\sigma_{LT}^{15})\Big] \\ &+ P_{l}\Big(\cos(\phi - \phi_{s})d\sigma_{LT}^{1} 3 + \frac{1}{Q}\cos(\phi_{s})d\sigma_{LT}^{14} + \frac{1}{Q}\cos(2\phi - \phi_{s})d\sigma_{LT}^{15})\Big] \end{aligned}$$

Distribution Functions (DF)						
N/q	U	L		Т		
U	f_1			$\boldsymbol{h}_{1}^{\perp}$		
L		g ₁		h_{1L}^{\perp}		
Т	f_{IT}^{\perp}	g_{1T}^{\perp}		$\boldsymbol{h}_{l}, \boldsymbol{h}_{lT}^{\perp}$		
Fragmentation Functions (FF)						
N/q	U	U		Т		
U	D	D ₁		H_{I}^{\perp}		

transverse structure

Transverse-momentum-dependent (TMD) DF

$$\sigma(l+N \rightarrow l'+h+X)$$

$$\sigma^{eN \to ehX} \propto \sum_{q} DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

$$\sum_{x \in h_1(x, p_T^2)} \frac{\text{Collins effect}}{\otimes H_1^{\perp}(z, k_T^2)}$$

correlation between parton transverse polarization in a transversely polarized nucleon and transverse momentum of the produced hadron

$$\begin{bmatrix} \phi \end{bmatrix} d\sigma_{UU}^2 + P_l \frac{1}{Q} sin(\phi) d\sigma_{LU}^3 \\ + \left(d\sigma_{LL}^6 + \frac{1}{Q} sin(\phi) d\sigma_{LL}^7 \right) \end{bmatrix}$$

$$+ S_T \left[sin(\phi - \phi_s) d\sigma_{UT}^8 + sin(\phi + \phi_s) d\sigma_{UT}^9 + sin(3\phi - \phi_s) d\sigma_{UT}^{10} + \frac{1}{Q} sin(2\phi - \phi_s) d\sigma_{UT}^{11} + \frac{1}{Q} sin(\phi_s) d\sigma_{UT}^{12} +$$

$$P_l \Big(\cos(\phi - \phi_s) d\sigma_{LT}^1 3 + \frac{1}{Q} \cos(\phi_s) d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_s) d\sigma_{LT}^{15} \Big)$$

+ S

transverse structure

Transverse-momentum-dependent (TMD) DF

$$\sigma(l+N \rightarrow l'+h+X)$$

$$\sigma^{eN \to ehX} \propto \sum_{q} DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

Sivers effect $\propto f_{1T}^{\perp}(x, p_T^2) \otimes \overline{D_1(z, k_T^2)}$

correlation between parton transverse momentum and nucleon transverse polarization

 $d\sigma_{LU}^3$

requires orbital angular momentum

$$d\sigma = d\sigma_{UU}^{0} + \cos(2\phi) d\sigma_{U}^{1}$$

$$requires orbital angular momentum
$$J\sigma_{LU}^{3}$$

$$S_{L}\left[sin(2\phi) d\sigma_{UL}^{4} + \frac{1}{q}sin(e^{-\frac{1}{q}sin(e^{-\frac{1}{q}sin(\phi + \phi_{s})}d\sigma_{UT}^{9} + sin(3\phi - \phi_{s})}d\sigma_{UT}^{10} + \frac{1}{Q}sin(2\phi - \phi_{s}) d\sigma_{UT}^{11} + \frac{1}{Q}sin(\phi_{s}) d\sigma_{UT}^{12} + \frac{1}{Q}cos(\phi - \phi_{s}) d\sigma_{LT}^{13} + \frac{1}{Q}cos(\phi_{s}) d\sigma_{LT}^{14} + \frac{1}{Q}cos(2\phi - \phi_{s}) d\sigma_{LT}^{15}\right)$$$$

Distribution Functions (DF)						
N/q	U	L	Т			
U	f_{I}		h_1^{\perp}			
L		g ₁	h_{1L}^{\perp}			
Т	f_{IT}^{\perp}	g_{1T}^{\perp}	h_{l}, h_{lT}^{\perp}			
Fragmentation Functions (FF)						
N/q	U	J	Т			
U		1	H_I^{\perp}			

+

Collins moments

$$\sigma(l+N \rightarrow l'+h+X)$$

TMDs can be studied by measuring azimuthal asymmetries in SIDIS

- $\pi^+ > 0, \pi^- < 0$
- π⁻ unexpectedly large!
- large *unfavoured* Collins fragmentation function!

K+ consistent with π+
K- (all sea object) opposite sign from π-

Sivers moments

$$\sigma(l+N \rightarrow l'+h+X)$$

- significantly positive π⁺
 moment
- ➡first evidence of a non zero naïve T-odd DF in DIS
- ➡requires non-zero orbital angular momentum
- π consistent with zero

K⁺ amplitude larger
 than for π⁺
 (Sivers for sea quarks)
 K⁻ consistent with zero

What do we learn from Collins moment?

$$\sigma(l+N \rightarrow l'+h+X)$$

First extraction of transversity distribution!!

Probing the orbital angular momentum

Accessing Generalized Parton Distributions (GPDs) via Deeply Virtual Compton Scattering (DVCS) and exclusive meson production

Probing the orbital angular momentum

Accessing Generalized Parton Distributions (GPDs) via Deeply Virtual Compton Scattering (DVCS) and exclusive meson production

Sensitive to J_q

A. Airapetian et al., JHEP05 (2011)126

A. Airapetian et al., JHEP08 (2010) 130

A. Airapetian et al., PLB 666, 446 (2008)]

A.Airapetian et al., JHEP06 (2008) 066

Backup slides

- Deep-inelastic scattering (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering cleanest way to probe substructure of nucleon
- Exchange of virtual boson, breakup and hadronization in DIS regime

cross section

 $\sigma(l+N{\rightarrow}l^{'}+X)$

Assuming one photon exchange

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{MQ^4} \frac{E}{E'} L_{\mu\nu} W_{\mu\nu} W_{\mu\nu}$$
hadronic tensor
contains information
about hadron structure
leptonic tensor
from QED

cross section

Assuming one photon exchange

 $\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{MQ^4} \frac{E}{E'} \frac{L_{\mu\nu}}{W\mu\nu}$

$$\sigma(l+N{\rightarrow}l'+X)$$

hadronic tensor contains information about hadron structure

leptonic tensor from QED

unpolarized structure functions momentum distribution of quarks

$$W^{\mu\nu} = -\left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^{2}}\right)F_{1}\left(x,Q^{2}\right) + \left(P^{\mu} - \frac{P \times q}{q^{2}}q^{\mu}\right)\left(P^{\nu} - \frac{P \times q}{q^{2}}q^{\nu}\right)F_{2}\left(x,Q^{2}\right) + iM\epsilon^{\mu\nu\rho\sigma}q_{\rho}\left[\frac{S_{\sigma}}{P \times q}g_{1}\left(x,Q^{2}\right) + \frac{S_{\sigma}\left(P \cdot q\right) - P_{\sigma}\left(S \cdot q\right)}{\left(P \times q\right)^{2}}g_{2}\left(x,Q^{2}\right)}\right]$$

polarized structure functions spin distribution of quarks

Inclusive DIS: unpolarized structure function F₂

 $\frac{\text{measured}}{dxdQ^2} = \frac{4\pi\alpha_{em}^2}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))}\right]$

in the 1-photon exchange approximation

$$F_1(x) = \frac{1}{2} \sum_q e_q^2 q(x)$$
$$F_2(x) = x \sum_q e_q^2 q(x)$$

Inclusive DIS: unpolarized structure function F₂

in the 1-photon exchange approximation

$$F_1(x) = \frac{1}{2} \sum_q e_q^2 q(x)$$
$$F_2(x) = x \sum_q e_q^2 q(x)$$

Inclusive DIS: Δq and ΔG

 $g_1^{NLO}(x,Q^2) = g_1^{LO} + \frac{1}{2}e^2 \sum_{q} \left[\Delta q(x,Q^2) \otimes S_q + \Delta g(x,Q^2) \otimes C_g \right]^{he}$

SU(3)_f symmetry implicitly assumed

•valence quarks are well determined $\Delta u_v > 0$ and $\Delta d_v < 0$

•**gluons** and **sea** quarks are poorly constraint by data

Inclusive DIS: Δq and ΔG

$$g_1^{NLO}(x,Q^2) = g_1^{LO} + \frac{1}{2}e^2 \sum_q [\Delta q(x,Q^2) \otimes S_q + \Delta g(x,Q^2) \otimes C_g]$$

SU(3)_f symmetry implicitly assumed

•valence quarks are well determined $\Delta u_v > 0$ and $\Delta d_v < 0$

•**gluons** and **sea** quarks are poorly constraint by data

Method (LO):

Use correlation between detected hadron and struck quark → **'Flavor separation'**

flavour separation

$$\sigma(l+N \rightarrow l'+h+X)$$

$$\sigma^{eN \to ehX} = \sum_{q} DF^{N \to q}(x) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z)$$

Probability that struck quark of flavour q fragments into hadron of type h with energy fraction $z=E_h/v$

$$\begin{split} A_1^h(x,Q^2) &\sim \frac{\sum_q e_q^2 \Delta q(x,Q^2) \int dz D_q^h(z,Q^2)}{\sum_q e_q^2 q(x,Q^2) \int dz D_q^h(z,Q^2)} \\ &\sim \sum_q \frac{e_q^2 q(x) \int dz D_q^h(z)}{\sum_{q'} e_{q'}^2 q' \int dz D_{q'}^h(z)} \cdot \frac{\Delta q(x)}{q(x)} \end{split}$$

Purity $P_q^h(x,z)$ is conditional probability that hadron of type h in the final state originated from a struck quark of flavour q

transverse structure

 $\sigma(l+N \rightarrow l'+h+X)$ Transverse-momentum-dependent (TMD) DF

$$\sigma^{eN \to ehX} \propto \sum DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

$$\sum_{q} DF^{N \to q}(x, p_T) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, p_T)$$

$$d\sigma = d\sigma_{UU}^{0} + \cos(2\phi)d\sigma_{UU}^{1} + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^{2} + P_{l}\frac{1}{Q}\sin(\phi)d\sigma_{LU}^{3}$$

$$+ S_{L}\left[sin(2\phi)d\sigma_{UL}^{4} + \frac{1}{O}sin(\phi)d\sigma_{UL}^{5} + P_{L}(d\sigma_{LL}^{6} + \frac{1}{O}sin(\phi)d\sigma_{LL}^{7})\right]$$

$$+ S_{T}\left[sin(\phi - \phi_{s})d\sigma_{l}^{8}\right] \frac{Boer-Mulders Effect}{\int Q} \sum_{l=1}^{2} \frac{1}{Q}sin(2\phi - \phi_{s})}{P_{l}\left(cos(\phi - \phi_{s})\right)} \sum_{l=1}^{2} \frac{Boer-Mulders Effect}{\int Q} \sum_{l=1}^{2} \frac{1}{Q}sin(2\phi - \phi_{s})}{\int Q} \sum_{l=1}^{2} \frac{1}{Q}sin(2\phi - \phi_{s})}$$

