TJ 65nm – Limits of Spatial Resolution

How Much Charge Information Do We Need?

Adriana, Finn, Gianpiero, Håkan, Simon

SiDet Meeting 19th November 2024

DESY.

The Question

To Motivate the Design of a Pixel Sensor for a Future Lepton Collider

Key questions; concerning spatial resolution

- What are the limits achievable with a certain design (standard, n-blanket, n-gap)?
- How do these limits depend on the pixel pitch and threshold?
- How much potential for improvements does charge information offer?
 - How many bits do we need in order to lever this potential?
 - What about two thresholds?

Page 3

The Data

Test-Beam Campaign at DESY with Analog Pixel Test Structures (APTS)

- Designed by ALICE as investigator for ITS3 [ref. pub.]
 - Three design flavors (standard, n-blanket, n-gap)
 - Pitch between 10 um and 25 um
- Readout developed with CERN EP R&D based on Caribou
 - We have quasi analog charge information without threshold
- Tested at DESY II Test-Beam Facility at about 4 GeV
- Charge calibration with ⁵⁵Fe
- Corryvreckan analysis of our data already done
 - ClusteringAnalog: allows offline threshold scans

Introducing Process Modifications

The Trade-Off Between Charge Collection and Spatial Resolution

charge collection, detection efficiency

cluster size, spatial resolution

and this becomes worse with decreasing thickness, increasing pitch, and increasing threshold

DESY. | H2M Meeting | Finn King | 19.11.2024

Selected Conditions

Use What We Have

- Use 4.8 V, if available
 - not expecting strong dependence for n-blc
- Use three thresholds if that allows efficient operation
- Get some complementary data points from ALICE publication

Pitch [um]	Туре	Bias [V]	Thresholds [e]
15	std	-4.8	100, (150)
25	std	-4.8	100
25	n-blc	-1.2	100, 150
25	n-gap	-4.8	100, 150, 200

Offline Digitization

- Our analysis chain makes use of ClusteringAnalog
- This allows easy offline threshold adjustment
- Added digitization feature with two parameters
 - digitizerBinWidth; example 100 e
 - digitizerBinNumber; example 8 bins
- Scanning
 - Bin width from 10 e to 1000 e (increasing step size)
 - Number of bins 0 (analog), 1(binary), 2, 4, 8, 16
- Problem
 - Charge weighting will not yield optimal resolution
 - Need to apply eta correction for all studied cases (3x3x6x15 = 810)

AD9249_0 Seed charge

Motivating

Eta Correction

- Imagine a particle hitting our detector close to the pixel boundary
- The charge collected in each electrode depends on the electric field
 - Standard layout: low field, diffusion component, charge sharing close to 50-50
 - n-gap layout: larger field, collection by drift, charge sharing close to 0-100
- In both cases, we estimate the particle position using a charge weighted center of gravity This is wrong
- It is the job of the eta correction to find out how wrong this is and to correct for the effect

deep p-well, shielding electronics n-well collection el epitaxial lav substrat deep p-well, shielding electronics n-gap, gap in n⁻lanket n-well collection el epitaxial lave

Ionizing particle

Correcting Bias of Spatial Residuals – Eta Correction

- Using modules EtaCalculation and EtaCorrection
- The Idea is simple
 - Plot the intercept of an associated track as a function of the reconstructed position (both in-pixel / modulo the pitch)
 - This reveals the bias of the reconstruction (deviation from diagonal)
 - Fit appropriate function (polynomial with 4 odd terms)
 - Use the fit to correct for the bias (in a next iteration over the run)
- This is not 100 % stable if the number of bins is small

η distribution X

Example, eta correction for n-gap at 100 e

Eta Correction – Examples

Extracting Spatial Resolutions and Comments on Systematic

- Characterizing residual width using iterative RMS(0.997)
- Need to subtract track resolution ($\sigma_{meas} = \sigma_{tel} + \sigma_{dut}$)
- But how to get the track resolution?
 - Use the GBL resolution calculator
 - Probably underestimates track resolution (time dependence)
 - Use a method similar to [Antonello]*
 - Cut on abs(eta) = $|(c_{_{\rm I}}-c_{_{\rm r}})$ / $(c_{_{\rm I}}+c_{_{\rm r}})|$ < 0.1 and cluster charge < 700 e
 - Assume DUT resolution is sub-dominant (checked with simulation)
 - Potentially overestimates track resolution

In my opinion this is the biggest issue with this study

- Alignment dependents on time
- Impact depends on run duration

Overview Track Resolution

Design	Pitch [um]	Voltage [V]	Track GBL [um]	Track Eta [um]
n-gap	25	-4.8	2.5	3.7
		У	2.5	3.4
n-blc	25	-1.2	2.5	4.0
		У	2.5	4.3
std	25	-4.8	2.5	5.0
		У	2.5	4.0
std	15	-4.8	1.9	4.0
		У	1.9	4.4

The "Eta-Potential"

How much can we gain from the Eta-Correction?*

- Especially at low thresholds ٠
- Overall not that impressive
 - Either small cluster size (n-gap) ٠
 - Or relatively linear charge sharing (std) ٠
- However, this does not mean that charge info is useless! . n-gap25, -4.8 V, th=100 e, 0 bins

The "Eta-Potential"

How much can we gain from the Eta-Correction?*

- Especially at low thresholds ٠
- Overall not that impressive .
 - Either small cluster size (n-gap) ٠
 - Or relatively linear charge sharing (std) ٠
- However, this does not mean that charge info is useless!

1000

bin width [e]

DESY.

- 0 bins - 1 bins - 2 bins

- 4 bins - 8 bins - 16 bins

1000 bin width [e]

0 bins

🔶 1 bins

-e-2 bins

4 bins

🔶 8 bins

Low Thresholds

This is interesting!

- We do indeed profit from charge info, std > blc > gap
- Already two bins enough to lever > 50 % of the potential
- The effect of the charge info reduces with
 - Decreasing pitch (limited by noise?)

Low Thresholds

This is interesting!

- We do indeed profit from charge info, std > blc > gap
- Already two bins enough to lever > 50 % of the potential
- The effect of the charge info reduces with
 - Decreasing pitch (limited by noise?)
 - Increasing threshold Cluster size (efficiency) decreases

Threshold Dependence

- Caveats
 - Points in () are below 99% efficiency
 - Systematic uncertainties between designs (telescope resolution)
- Threshold has comparably large impact
 - n-gap: resolution gains from threshold larger thank resolution gains from charge info
 - n-blanket and standard: need low threshold to profit from charge info

Pitch Dependence

- Alice data is from APTS [ref. pub.]
 - Pitch has clear, strong, linear impact on spatial resolution for n-gap and n-blanket design
 - Alice results indicate lower impact of charge info
 - Especially n-blanket 25 um
- Data for standard layout is a bit scarce/ confusing
 - 15 um: small tension between Alice and us
 - 25 um, binary: I am puzzled and intend to double check everything!

To achieve a resolution better than 3 um:

- Pitch and design are crucial, threshold too
- Impact of charge info might make difference

The Question

To Motivate the Design of a Pixel Sensor for a Future Lepton Collider

Key questions; concerning spatial resolution

- What are the limits achievable with a certain design (standard, n-blanket, n-gap)?
- How do these limits depend on the pixel pitch and threshold?
- How much potential for improvements does charge information offer?
 - How many bits do we need in order to lever this potential?
 - What about two thresholds?

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

Finn Feindt Tangerine

www.desy.de

finn.feindt@desy.de