

Showerflow

07/11/2024

Intro

Thanks Duncan for fixing a bug in `generate.py`. This is now merged.

Following from last time;

- 1) Plotted variants to be compared on same axis.
- 2) Tried training base distribution.
- 3) Tried only one block.
- 4) Tip from Thorsten tried working with positive-only values in log space.
- 5) Investigated cause of increasing gradient norms.

Naming conventions

- original/alt1/alt3 \rightarrow transforms used in a block
- nb1/nb2/nb4... \rightarrow Number of blocks
- Fnorms \rightarrow Don't predict totals and normalise by constant factor
- Tbase \rightarrow train the base distirbution too

Caveat emptor

- Alt3 is discriminator may be insufficiently trained.
- Alt1 with tbase and 1 block may be insufficiently trained.

Num blocks

Fixed input norms

Tbase; train the base distribution

```
7 class GaussModule(nn.Module):
```

0

12

13

14 15 16

17

18

Create a simple, flexible module with a set of independent normal distributions. In addition to the usual torch.nn.Module behavior it has a `distribution` attribute that is a torch.Distribution.

```
def __init__(self, num_inputs, device, **kwargs):
    """
```

Constructor.

```
Parameters
```

```
num_inputs : int
```

The dimension required for a single event (set of independent normals).

device : str

"cpu" or "gpu", the device to compute on.

```
....
```

```
super().__init__()
```

```
self.loc = nn.Parameter(torch.zeros(num_inputs).to(device))
```

```
self.scale = nn.Parameter(torch.ones(num_inputs).to(device))
```

```
self.distribution = dist.Normal(self.loc, self.scale)
```

Tbase; train the base distribution

Ο

Alt3; Positive only values in log space.

		1.1.
337 def	compile_HybridTanH_alt3(113
339):		114
340	factory = HybridTanH factory(num inputs, num cond inputs, device)	11:
341		117
342	transform_pattern = [115
343	"affine_coupling",	110
344	"permutation",	120
345	"affine_coupling",	121
346	"permutation",	122
347	"affine_coupling",	123
348	"permutation",	124
349	"spline_coupling",	125
350	"permutation", "affine coupling"	120
351	"arrine_coupling",	127
352	"affine coupling"	128
353	"permutation"	129
355	"affine counling"	130
356	"permutation"	131
357		132
358		133
359	# if we predict the totals, make them positive	134
360	exponential ranges = [] if num inputs < 65 else [(0, 2)]	135
361	# the last 60 layers should be always positive	130
362	<pre>exponential_ranges += [(num_inputs - 60, num_inputs)]</pre>	13
363	<pre>transform_pattern.append("partial_exponential")</pre>	130
364		1.46
365	<pre>model, flow_dist, transforms = factory.create(</pre>	1/1
366	 1, # just one, becuase we have repeated inside our pattern 	141
367	transform_pattern,	143
368	count_bins=8,	144
369	train_base=train_base,	14
370	exponential_ranges=exponential_ranges,	146
371		147
372	return model, flow_dist, transforms	145

def add_partial_exponential(self, exponential_ranges, **kwargs):

Add one exponential transformation to the flow being constructed. Probably won't work unless it's only the last transform used.

```
Under the hood, the distribution is shifted into the positive by
a small amount. after the exponential transformation is applied.
This avoids issues with the log of 0 when moving back to the original space.
identity = torch.distributions.transforms.identity transform
exponential = torch.distributions.transforms.ExpTransform()
tiny shift = torch.distributions.transforms.AffineTransform(
    loc=-torch.tensor(0.1).to(self.device),
    scale=torch.tensor(1.0).to(self.device).
change points = np.array(exponential ranges).flatten()
lengths = np.diff(change points).tolist()
transforms = [exponential, identity] * len(exponential ranges)
shifts = [tiny shift, identity] * len(exponential ranges)
if change points[0] != 0:
    transforms = [identity] + transforms
    shifts = [identity] + shifts
    lengths = [change points[0]] + lengths
if change points[-1] < self.num inputs:</pre>
    lengths.append(self.num inputs - change points[-1])
else:
    transforms = transforms[:-1]
    shifts = shifts[:-1]
partial = torch.distributions.transforms.CatTransform(
    transforms, dim=-1, lengths=lengths
self.transforms.append(partial)
shift = torch.distributions.transforms.CatTransform(
    shifts, dim=-1, lengths=lengths
self.transforms.append(shift)
```

Alt3; Positive only values in log space.

TO

Take away

- 1 block is slightly worse than 2 blocks, but still better than 8 blocks.
- Fixed input norms/removing the totals is the clearest improvement.
- Training the base distribution doesn't seem to do much, but a bit early to tell.
- Taking the positive-only values into log space isn't a good solution. Possible loss of precision in high values? Not sure.

Now – some analysis on a toy model.

Three distributions

12

Train while tracking values

Train while tracking values

14

Train while tracking values

Gave up copying from notbook.... sorry

