HIPSTER

High Intensity Performance and Sustainable Technology for Energy Recovery Linacs

Envisaged for SuperSurfer:

Subproject 1: SRF for ERLs

- Further tests of alternative antenna materials, maybe with electron beam already (WP1)
- Coupling the cavities to a smaller bandwidth for saving RF power (WP2)

Subproject 2: Beam Dynamics for ERLs

- Optimizing recirculating machines for highest beam quality and stability
- → Subproject 2 not funded

Funding

Personnel:

2 positions funded, third person in Subproject 2 cut:

one PhD student (Paul Plattner) and one PostDoc (Ricardo Monroy) both have been hired for TOSCA already

Invest:

Cut in invest by 40,000 EUR (95,000 instead of 135,000)

Travel etc.:

26,000 approved (we asked for approx. double amount)

Subproject 1: SRF for ERLs

Concern: Heating of HOM-antennas Solution (within TOSCA 1):

Coating of antennas with high T_C superconductors (ongoing work)

For low beam loading machines (like ERLs having virtually no beamloading) the **required RF power** is dominated by microphonics

→ Residual microphonics require overcoupled FPC and are cost extensive

Case study: RF power for PERLE vs Q_e with and without FRT (N. Shipman, CERN, ERL 22)

Our goals for TOSCA 2:

Add a **fast reactive tuner** to our test-cryomodule and reduce Q_e significantly by integrating a variable low power FPC. Finally test everything **with beam** at HZB sealab

Injector NC	5 MeV
Cryomodules	25 MeV
EB-mode P2/ darkMESA	155 MeV @150 μA (pol.)
ER-mode MAGIX	105 MeV @ 1 (10) mA
Q_0	$1.25 * 10^{10}$
f	1.3 GHz

MESA Project

(fully funded, commissioning starts in 2025)

Old

MESA Enhanced ELBE-type Cryomodules

- Concern: Heating of the HOM-Antenna
- 2. Changes:
- Sapphire windows at HOM feedthrough
- Strip line in HOM cable for cooling

Cryomodule (2 XFEL Cavities @ 12.5 MV/m)

Overview goals WP1 (antennas/module improvements)

Tasks as defined in the application:

Task 1: Cold test (vertical) of cavities equipped with high TC superconductors (WP1.1)

Task 2: Integration of the tested cavities into the cryomodule (WP1.2)

Task 3: Design and integration of a variable input coupler for low forward power (WP1.3)

Task 4: Cold tests and optimization of the completed module (WP1.4)

- → WP1 continues and extends ongoing work from TOSCA
- → Task 3 needs to be canceled (or postponed) due to cuts in funding of investment

Magnetic field at antenna

(P. Plattner)

Maximum of magnetic field at antenna $H_{max,T} = 0.53 \text{ mT}$ Field distribution: maximum at the tip of the antenna Field maxima of HOMs not at tip and $H_{max,HOM} < H_{max,T}$ $H_{max,HOM}/H_{max,T} \approx 0.001 \text{ for strongest dipole mode}$

 $H_{\text{max,T}} = 1\% H_{\text{peak}}$ $E_{acc} = 12.5 \frac{MeV}{m}$

HOM antenna heating

(P. Plattner)

In ER-mode:

4 e- beams simultanious (2x accelerating; 2x decelerating)

Power stored in HOMs (longitudinal):

$$P_{HOM} = N * q * k * I$$

N: #beams; q: bunch charge; k: loss factor; I: average beam current

\rightarrow 30% of P_{HOM} at HOM antenna tip

L. Merminga, D.R. Douglas, and G.A. Krafft. High-current energyrecovering electron Linacs. Annual Review of Nuclear and Particle Science, 53(1):387–429, 2003.

Theoretical beam optical limit (C. Stoll, Phd. Thesis, 2020 Mainz):
Beam Blow Up limit: **12 mA**

Thermal Limit(T. Stengler, Phd Thesis, 2020 Mainz):

Calculated power limit of 95 mW ($\sim 3.2 \text{ mA}$)

I [mA]	q [pC]	P_{HOM} [mW]	P_{Tip} [mW]	
1	0.7	30.8	10	
10	7.7	3080	1000	

Magnetic field at antenna

(P. Plattner)

Material	Nb	NbTiN	Nb ₃ Sn
T_C / K	9.27	17.3	18
F / GHz	1.3	1.3	1.3
λ_L / nm	39	240	90
ξ / nm [1]	380	50	70
$\Delta_{reduced}$ [2]	1.5	2.8	3.1

[1] all values are multiplied by $\frac{\pi}{2}$

[2] all values are multiplied by $\frac{1.60218 *10^{-22}}{k_B * T_{C.i.}}$

Heat loss at the antenna can be calculated via R_S :

$$P_{loss} = \frac{1}{2} R_S \int |H|^2 ds$$

Dominated by 1.3 GHz Beam-cavity interaction neglected!

 R_S via SRIMP (Halbritter, Cornell) H = 0.53 mT

Producing SC Thin films in TOSCA/SuperSurfer

(P. Plattner)

- UHH: NbTiN on Nb (SIS possible)
 Plasma Enhanced Atomic Layer
 Deposition (PEALD)
- TUDA: Nb₃Sn on OFHC Cu Co-Sputtering

35mm

Producing SC Thin films in TOSCA/SuperSurfer

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

(P. Plattner)

DARMSTADT

NbTiN(PEALD) @Hamburg

Substrate: Niobium

Time: 4 days

Thickness: \sim 100nm ($\geq \lambda_L$)

 $T_C = 16 \text{ K (on flat samples)}$

Deposition Temperatur < 300°C → backe out at 900°C

Nb₃Sn (Co-Sputtering) @TU Darmstadt

Substrate: Copper

Time: 1 hour

Thickness: ~400nm

 $T_C = \sim 14 \text{ K (on cylindrical substitue)}$

Deposition Temperatur 520°C

Picture from Amir Fahood

Producing SC Thin films in TOSCA/SuperSurfer

JG U

JOHANNES GUTENBERG
UNIVERSITÄT MAINZ

(P. Plattner)

- 1. KYOCERA in Japan → Mainz: production of Nb antenna
- 2. Mainz → UHH: NbTiN coating (currently here!)
- 3. UHH \rightarrow Mainz
- 4. Mainz \rightarrow KYOCERA for brasing
- 5. KYOCERA → Mainz for testing in cavities

Ongoing work

(P. Plattner)

HPR: (TESLA recipe) each cell rinsed for 5 min (18x)

Drying for ∼24 hour after HPR

Next steps:

- Installing accessories
- Vacuum with RGA
- Cold test at ATMF (basline)
- 2nd cold test with coated HOM antennas 2025
- Assembling of the CM
- Test CM with e- beam (2026)

Overview goals WP2 (antennas/module improvements)

Tasks as defined in the application:

Task 1: Warm material RF tests at new designed test bench, Material characterization (WP2.1)

Task 2: Designing a prototype for cold rf tests (beam pipe coupling, proof of concept) (WP2.2)

Task 3: Integration of the prototype into existing rf ports at TESLA/XFEL cavities (enable testing of dressed cavities in cryomodules) and cold tests. (WP2.3)

→ New project within SuperSurfer

Power saving with FRT

(T. Stengler)

Microphonics in SRF cavities yield in high coupling bandwidth and thus power consumption

Pictures: N. Shipman (HZB)

→ For MESA: 5 kW microphonics reserve + 2.5 kW reflected power (+ beam)

Power saving with FRT, the MESA case

JG U
JOHANNES GUTENBERG

(T. Stengler)

- → Best performance using fast tuner + smaller coupling bandwidth
- → Significant power saving even without new couplers

Ongoing work

(R. Monroy)

- Design of a test bench for warm testing
- Survey and aquisition of FRT materials

Goals:

- Preparation of a RF design
- Inclusion into MESA control system
- Cold tests