Using soft emissions for high-precision calculations

Roger Balsach

Theory Fellows' meeting 2024

November 18, 2024

About myself

Sabadell ~30min from Barcelona

э

* 注入 * 注入

< 🗇 🕨

🌽 Food: Mexican & Indian

I Listening to Music (all styles)

E Reading (specially Science-fiction and Fantasy)

Image: A test in te

İ Chess & Table Tennis

Physics background

Bachelor of Physics (2015-2019)

Universitat Autônoma de Barcelona Bachelor thesis: "Effective Lagrangians of the Standard Model"

Postgraduate Program in High Energy Physics, Astrophysics & Cosmology (2019-2020)

Master's thesis: "What can the anomalous magnetic moment of the leptons teach us about new physics"

PhD in Physics at the University of Münster (2021-2024)

Universität

Dissertation: "Soft-Emission Effects in High-Energy Processes"

(E)

Soft emissions

- The emission of a particle with energy much lower than any other scale relevant to the process.
- Relevant for defining infrared-safe observables and cancelling infrared divergences higher-order calculations.
- Soft-emission approximation allows for more complex calculations that would be unfeasible otherwise.

Theorem (Eikonal approximation)

$$\mathcal{A}_n \approx \eta Q \frac{\epsilon^*(k) \cdot p}{k \cdot p} \hat{\mathbf{T}}_n \mathbf{H}$$

Soft emissions

- The emission of a particle with energy much lower than any other scale relevant to the process.
- Relevant for defining infrared-safe observables and cancelling infrared divergences higher-order calculations.
- Soft-emission approximation allows for more complex calculations that would be unfeasible otherwise.

Theorem (Eikonal approximation)

$$\mathcal{A}_n pprox \eta Q rac{\epsilon^*(k) \cdot p}{k \cdot p} \hat{\mathbf{T}}_n \mathbf{H}$$

Factorisation:

The radiative amplitude ${\cal A}$ is obtained by multiplying the hard amplitude ${\cal H}$ with a **process-independent** factor.

∃ ► < ∃ ►</p>

Soft emissions

- The emission of a particle with energy much lower than any other scale relevant to the process.
- Relevant for defining infrared-safe observables and cancelling infrared divergences higher-order calculations.
- Soft-emission approximation allows for more complex calculations that would be unfeasible otherwise.

Theorem (Eikonal approximation)

$$\mathcal{A}_n \approx \eta Q \frac{\epsilon^*(k) \cdot p}{k \cdot p} \mathbf{\hat{T}}_n \mathbf{H}$$

Colour space:

Amplitude \mathcal{H} can be decomposed as a vector in an abstract vector space: **H** The emission/absorption of a gluon can be represented as a map between colour spaces, $\hat{\mathbf{T}}_n$.

글 🖌 🔺 글 🛌

Bremsstrahlung vs Resummation

Photon bremsstrahlung:

- Study the emission of a soft photon from a given process, e.g., $pp \rightarrow \mu^+ \mu^- \gamma$
- Only one photon is radiated and observed in the detector.
- We can measure the energy of the photon, thus we can study how good the approximation is at different energies.

Bremsstrahlung vs Resummation

Photon bremsstrahlung:

- Study the emission of a soft photon from a given process, e.g., $pp \rightarrow \mu^+ \mu^- \gamma$
- Only one photon is radiated and observed in the detector.
- We can measure the energy of the photon, thus we can study how good the approximation is at different energies.

Soft-gluon resummation:

- Studied process does not involve soft radiation: $pp \rightarrow t\bar{t}H$, $pp \rightarrow t\bar{t}\gamma$, $pp \rightarrow t\bar{t}Z$
- Soft radiation is used to compute higher-order corrections.
- The number of soft gluons and their momenta are not known, we need to sum over all possible states.

∃ ► < ∃ ►</p>

Resummation for $t\bar{t}H$ production

 $\sigma^{\rm NNLO+NNLL}_{t\bar{t}H} = 515^{+1.3(4)\,\%}_{-3.2(2)\,\%}\,{\rm fb} \qquad \sigma^{\rm exp}_{t\bar{t}H} = (557\pm18\,\%)\,\,{\rm fb} \qquad @13\,{\rm TeV}$

æ

く 目 ト く ヨ ト く ヨ ト

Resummation for $t\bar{t}H$ production

 $\sigma^{\rm NNLO+NNLL}_{t\bar{t}H} = 515^{+1.3(4)\,\%}_{-3.2(2)\,\%}\,{\rm fb} \qquad \sigma^{\rm exp}_{t\bar{t}H} = (557\pm18\,\%)\,\,{\rm fb} \qquad @13\,{\rm TeV}$

A 10

(E)

э

Soft photon emission beyond LP

Soft theorem has subleading corrections

Theorem (Low-Burnet-Kroll)

$$\overline{|\mathcal{A}|}_{\text{LP+NLP}}^{2} = -\sum_{i,j} \frac{(Q_{i}p_{i}) \cdot (Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \left[1 + \frac{(p_{j} \cdot k)p_{i\mu}}{p_{i} \cdot p_{j}} G_{j}^{\mu\nu} \frac{\partial}{\partial p_{j}^{\nu}} \right] \overline{|\mathcal{H}|}^{2}(p)$$
$$= -\left(\sum_{i,j} \frac{(Q_{i}p_{i}) \cdot (Q_{j}p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)}\right) \overline{|\mathcal{H}(p+\delta p)|}^{2}$$

Recently, some people claimed that the LBK theorem was inconsistent and ambiguous.

- I proved that ambiguities in the LBK theorem are beyond NLP and thus not in the range of validity of the theorem.
- I found an alternative definitions of the shifts δp that keep masses of external particles unchanged to all orders in the soft expansion. Simplifying the numerical implementation and allowing the use of on-shell amplitude generators.

글 🖌 🔺 글 🛌

Thank You!

Questions?

Contact: rbalsach@desy.de

э

글 🖌 🖌 글 🛌