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Ongoing projects:

Observables ~ parton density  Matrix element  parton density⊗ ⊗
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σ(pA, pB) = ∑
a,b

∫
1

0
dxa fa/A(xa, μ2

F)∫
1

0
dxb fb/B(xb, μ2

F) [σLO
ab (pa, pb; μ2

R, μ2
F) + σNLO

ab (pa, pb; μ2
R, μ2

F)

+σNNLO
ab (pa, pb; μ2

R, μ2
F) + …]

Ongoing projects:
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So far :
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So far :

Further progress requires improvement in two–loop 
computations
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CoLoRFul  NNLO Subtraction Scheme

Aim: To construct a fully general local subtraction scheme for differential NNLO cross-section. 

• To do so: Phase space (PS) integrals must be performed numerically 

• Problem: IR singularities at intermediate stages 

• Solution: Treat them using a subtraction method
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The Scheme: Consider the NNLO correction to a generic -jet observablem

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = ∫m+2

dσRR
m+2Jm+2 + ∫m+1

dσRV
m+1Jm+1 + ∫m

dσVV
m Jm

•  is infrared (IR) and collinear safe  final-state parton jet function. 

• Matrix element for  (tree) and   for many processes. 

•  (2-loop) know for 4 parton, V+3 parton processes, higher 
multiplicities are on the horizon. 

• The three contributions are separately infrared divergent in  
dimensions.

Jm m

σRR
m+2 σRV

m+1

σVV
m

d = 4
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Double Virtual:  

•  Kinematic singularities screened by jet function: PS integration finite 

•  Explicit  pole up to . 

    

σVV
m

ϵ 𝒪(ϵ−4)

Double Real:  

• Kinematic singularities as one or two partons unresolved: up to  poles 
from PS integration. 

• No explicit  pole

σRR
m+2

𝒪(ϵ−4)

ϵ
Real Virtual :  

• Kinematic singularities as one partons unresolved: up to  poles from 

      PS integration. 

• Explicit  pole up to .

σRV
m+1

𝒪(ϵ−2)

ϵ 𝒪(ϵ−2)
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Rewrite the NNLO correction as a sum of three terms 

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions
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•  regularizes the doubly-unresolved limits of . 

•  regularizes the singly-unresolved limits of . 

•  accounts for the overlap of   and  . 

•  regularizes the singly-unresolved limits of . 

•  regularizes the singly-unresolved limits of 

dσRR,A2
m+2 dσRR

m+2

dσRR,A1
m+2 dσRR

m+2

dσRR,A12
m+2 dσRR,A1

m+2 dσRR,A2
m+2

dσRR,A1
m+1 dσRV

m+1

( ∫
1

dσRR,A1
m+2 )A1 ∫1

dσRR,A1
m+2 .

The counterterms are constructed as:
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The Phase space integrals are then solved as : 

• choose explicit parametrization of phase space. 

•  write the parametric integral representation in chosen variables. 

•  resolve the  poles by sector decomposition. 

•  pole coefficients are finite parametric integrals. 

•  evaluate the parametric integrals in terms of multiple polylogs 

•  simplify the result by converting all polylogarithms in terms of : 

   . 

ϵ

G[a, b; x] = Li2[ b − x
b − a ] − Li2[ b

b − a ] + log(1 −
x
b )log( x − a

b − a )
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Numerical Implementation 
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Interface of FeynRules 
to new program ANATAR Output 

Amplitude Sq.Lagrangian FeynRules

Files mostly in FORM 
Language

Interface in 
Mathematica

Run FORM in the 
background

Template files & 
Run bash commands 

in Mathematica

Feynman Diagrams 
by QGraf

Identify the 
 topologies

Run KIRA in the 
background

Package for automatizing steps of loop computation

16



ANATAR

AN  Automated Tool for Higher order Amplitude 
geneRation P.C. Andres & Paarth
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End of my journey : P.C. Yashasvee Goel 
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End of my journey :

Thank you for your attention !
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