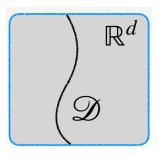
Analytic bootstrap for defect CFTs

Davide Bonomi

DESY

- Name: Davide Bonomi.
- Born in Bergamo, Italy.
- Bachelor's and Master's in Milan.
- PhD in London.
- Hobbies: reading, trekking,...

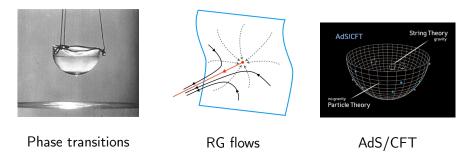
Main focus: Conformal Field Theories (CFTs) that contain extended objects (defects).



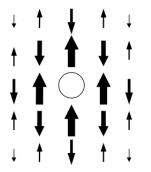
Main strategy: use conformal symmetry + properties of the Operator Product Expansion (OPE) to constrain or solve CFTs (conformal bootstrap).

Conformal invariance \sim Poincarè + scale invariance.

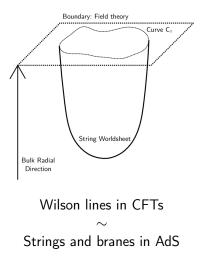
Conformal field theories are ubiquitous in physics:



Many CFTs admit interesting defects:



Phase transitions with impurities (e.g. metal with external atom)



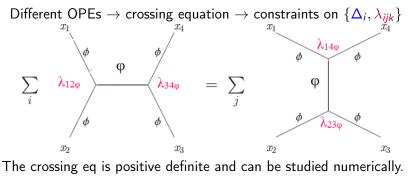
Conformal Bootstrap

2pt and 3pt fixed up to scaling dimensions and OPE coefficients:

$$\langle \mathcal{O}_i(\mathbf{x})\mathcal{O}_j(\mathbf{0}) \rangle = rac{\delta_{ij}}{\mathbf{x}^{2\Delta_{\mathcal{O}}}}, \quad \langle \mathcal{O}_i\mathcal{O}_j\mathcal{O}_k \rangle \sim \lambda_{ijk}$$

All other correlators can be computed using the OPE:

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) \stackrel{\mathsf{OPE}}{=} \sum_{k} \frac{\lambda_{ijk}\mathcal{O}_{k}(0)}{|x|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}} + \dots$$

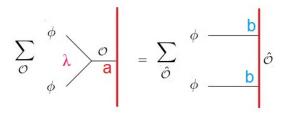


Defect bootstrap

A *p*-dimensional defect breaks the bulk conformal group as

$$\underbrace{SO(d+1,1)}_{\mathcal{O}_{\Delta,\ell}} \rightarrow \underbrace{SO(p+1,1) \times SO(d-p)}_{\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}}$$

Bulk and defect OPE \rightarrow crossing equation $\rightarrow \left\{ \hat{\Delta}_{i}, \hat{\lambda}_{ijk}, a_{i}, b_{ij} \right\}$



Problem: not positive definite \rightarrow no numerical bootstrap.

Analytic bootstrap

The OPE controls the singularities of correlators. We can use this input to reconstruct correlators and extract CFT data. No need of a positive definite expansion.

z'

E.g.: consider a function f(z) such that

- f(z) has a branch cut for z > 1.
- $|f(z)/z| \rightarrow 0$ as $|z| \rightarrow \infty$.

Cauchy's theorem implies:

$$f(z) = \frac{1}{2\pi i} \oint \frac{dz'}{z'-z} f(z')$$

By deforming the contour:

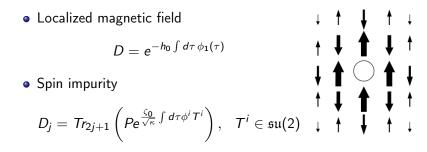
$$f(z) = \frac{1}{2\pi i} \int_{1}^{\infty} \frac{dz'}{z' - z} \underbrace{\operatorname{Disc} f(z')}_{f(z' + i\epsilon) - f(z' - i\epsilon)}$$
Davide Boromi Analytic bootstrap for defect CETs

Example: defects in the O(N) model

We studied the critical O(N) model

$$S = \int d^d x igg[rac{1}{2} \left(\partial_\mu \phi_i
ight)^2 + rac{\lambda}{4!} \left(\phi_i \phi_i
ight)^2 igg]$$

in presence of defects in $d = 4 - \varepsilon$ with $\varepsilon \ll 1$.



Main result: $\langle \phi \phi \rangle$ and ∞ new defect CFT data from few bulk data.

- Combine analytic bootstrap with numerical bulk data.
- Correlators of defects (e.g. correlator of two impurities).
- Holographic defects and interplay with integrability, localization ect.

Thank you for your attention!