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My research

Main focus: Conformal Field Theories (CFTs) that contain
extended objects (defects).

Main strategy: use conformal symmetry + properties of the
Operator Product Expansion (OPE) to constrain or solve CFTs
(conformal bootstrap).
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Why CFT?

Conformal invariance ∼ Poincarè + scale invariance.

Conformal field theories are ubiquitous in physics:

Phase transitions RG flows AdS/CFT
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Why defects?

Many CFTs admit interesting defects:

Phase transitions with impurities
(e.g. metal with external atom)

Wilson lines in CFTs
∼

Strings and branes in AdS
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Conformal Bootstrap

2pt and 3pt fixed up to scaling dimensions and OPE coefficients:

⟨Oi (x)Oj(0)⟩ =
δij

x2∆O
, ⟨OiOjOk⟩ ∼ λijk

All other correlators can be computed using the OPE:

Oi (x)Oj(0)
OPE
=

∑
k

λijkOk(0)
|x |∆i+∆j−∆k

+ ...

Different OPEs → crossing equation → constraints on {∆i , λijk}

The crossing eq is positive definite and can be studied numerically.
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Defect bootstrap

A p-dimensional defect breaks the bulk conformal group as

SO(d + 1, 1)︸ ︷︷ ︸
O∆,ℓ

→ SO(p + 1, 1)× SO(d − p)︸ ︷︷ ︸
Ô∆̂,ℓ̂,s

Bulk and defect OPE → crossing equation →
{
∆̂i , λ̂ijk , ai , bij

}

Problem: not positive definite → no numerical bootstrap.
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Analytic bootstrap

The OPE controls the singularities of correlators. We can use this
input to reconstruct correlators and extract CFT data. No need of
a positive definite expansion.

E.g.: consider a function f (z) such that

f (z) has a branch cut for z > 1.
|f (z)/z | → 0 as |z | → ∞.

Cauchy’s theorem implies:

f (z) =
1

2πi

∮
dz ′

z ′ − z
f (z ′)

By deforming the contour:

f (z) =
1

2πi

∫ ∞

1

dz ′

z ′ − z
Discf (z ′)︸ ︷︷ ︸

f (z ′ + iϵ)− f (z ′ − iϵ)
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Example: defects in the O(N) model

We studied the critical O(N) model

S =

∫
ddx

[1
2 (∂µϕi )

2 + λ
4! (ϕiϕi )

2 ]
in presence of defects in d = 4 − ε with ε << 1.

Localized magnetic field

D = e−h0
∫
dτ ϕ1(τ)

Spin impurity

Dj = Tr2j+1

(
Pe

ζ0√
κ

∫
dτϕiT i

)
, T i ∈ su(2)

Main result: ⟨ϕϕ⟩ and ∞ new defect CFT data from few bulk data.
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Ongoing work and future directions

Combine analytic bootstrap with numerical bulk data.

Correlators of defects (e.g. correlator of two impurities).

Holographic defects and interplay with integrability,
localization ect.
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Thank you for your attention!
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