Models for Inflation and Early Universe Cosmology

Adriana Menkara

The Abydos King List (Seti I and Ramses II)

Menkara (2181 b.C.)

The Abydos King List (Seti and Ramses II)

mn= Long-lasting k3 = Soul

Las Palmas de Gran Canaria

Bachelor

Bachelor thesis: BBN

Bachelor

I would look weird at people who run.

Trabajo Fin de Máster

Superprojective embeddings of extended supersymmetry

Apparently I now happily run up to 10K.

Ph.D: I thought it was a good idea to go to the antipodes to write a PhD thesis on inflation

)	n
---	---

Ph.D: I thought it was a good idea to go to the antipodes to write a PhD thesis on inflation

)	n
---	---

6 months at CERN

Now I work on the hierarchy problem ...and maybe a marathon is not that much?

The logical conclusion

= Ultramarathons

Inflation Reheating

Dark Matter

About my work

Naturalness

Cosmology and particle Physics

$\sim 10^{16} \, \mathrm{GeV}$

Inflation

 $\sim 100 \, {\rm GeV}$ Colliders

??GeV

Dark Matter

Cosmology and particle Physics

$\sim 10^{16} \, \mathrm{GeV}$

Inflation

$\sim 100 \, {\rm GeV}$ Colliders

Higgs inflation and its UV completions

Today

??GeV

Dark Matter

What do we (not) know about the universe?

Remarkably well described by a **flat** FLRW

Why is the universe so homogeneous?

 $\frac{\delta T}{T} \sim 10^{-4}$

Why inflation?

Inflation provides a solution to the flatness and horizon problems AND provides the seeds for structure formation

No new evidence of physics BSM \implies Inflaton = SM Higgs boson?? If true, we could test the the early universe with our accessible EW data.

$$V = \lambda_{H} \left(H^{\dagger} H - \right)$$
$$(10^{-12})$$

Overproduction of density fluctuations

Unfortunately, the Higgs SM potential doesn't work to explain inflation

Higgs Inflation

[Bezrukov, Shaposnikov]

$$\mathscr{L} = \sqrt{-g_J} \left[-\frac{1}{2} \left(1 + \xi h^2 \right) R_J + \frac{1}{2} g_J^{\mu\nu} \partial_\mu h \partial_\nu h - \frac{\lambda}{4} h^4 \right]$$

Non minimal coupling

$$\xi^2/\lambda \sim 10^{10} \implies \xi \sim 10^4$$

 $\Lambda_{\rm cutoff} = M_P / \xi$ is a low cutoff scale

Higgs Inflation + non-minimal coupling

Higgs-o models [AM, Hyun Min Lee]

$$\mathscr{L}/\sqrt{-g_L} = \frac{M_p^2}{2} \left(1 - \frac{h^2}{6M_p^2} - \frac{\sigma^2}{6M_p^2} \right) R_L - \frac{1}{2} \left(\partial_\mu \sigma \right)^2 - \frac{1}{2} \left(\partial_\mu h \right)^2 - \frac{\lambda}{4} h^4 - \frac{\kappa}{4} \left[\sigma(\sigma + \sqrt{6}M_p) + 3\left(\xi + \frac{1}{6}\right) h^2 \right]^2$$

UV completion of Higgs inflation, valid up to the Planck scale.

From the potential we can directly read the perturbativity conditions

 $\kappa \lesssim 1, \quad \lambda + 9\kappa$

 \checkmark The stability of the electroweak vacuum is guaranteed due to the tree-level shift in λ .

$$\kappa \left(\xi + \frac{1}{6}\right)^2 \lesssim 1, \quad 6\kappa \left(\xi + \frac{1}{6}\right) \lesssim 1$$

$$\lambda_{\rm eff} = \lambda + 9\kappa \left(\xi - \xi\right)$$

Reheating from Higgs-sigma

My research overview

Higgs inflation Phys.Rev.D 107 (2023) Naturalness and inflation

Conformal symmetry

Cosmological relaxation and Dark Matter

Inflation at the Pole

JHEP 06 (2021) 013

JHEP 09 (2021) 018 *JHEP* 10 (2021) 178

JHEP 05 (2022) 121

Phys.Lett.B 834 (2022)

Peccei Quinn *JHEP* 05 (2024) 295

Phys.Rev.D 106 (2022)