Preference of L-band SRF over VHF for high-repetition-rate injector for EuXFEL

compiled by Elmar Vogel

DESY-STFC-XFEL collaboration meeting, DESY, Hamburg December 5, 2024

Two types of SRF gun cavities

Parameter range, laboratories and projects

VHF-band quarter wave resonator (QWR) SRF guns

RF frequency: 113 MHz to 200 MHz

exit energy: 1 MeV to 1.8 MeV

cathode *E* field: 6 MV/m to 30 MV/m

peak on axis *E* field: 6 MV/m to 30 MV/m

laboratories & projects:

- SLCS-II HE Low-Emittance Injector by SLAC/FRIB/ANL/HZDR collaboration
- BNL SRF gun for hardon cooling
- (Wisconsin/SLAC/ANL SRF gun no longer used)

L-band (elliptical shaped) SRF guns

RF frequency:	1.3 GHz	
exit energy:	1 MeV to 4 MeV	
cathode <i>E</i> field:	7.5 MV/m to > 40 MV/m	(>60 MV/m?)
peak on axis <i>E</i> field:	7.5 MV/m to > $40 MV/m$	(>60 MV/m?)

laboratories & projects:

- HZDR photoinjector for ELBE (THz FEL)
- HZB for bERLinPro (ERL)
- MSU/KEK for photocathode R&D (former KEK-ERL)
- Osaka University for electron microscopy
- PKU DC-SRF gun
- DESY for Eu XFEL HDC operation, cavity for PolFEL

Page 2

Two types of SRF gun cavities

Electric field distribution – difference between quarter wave resonators and elliptical cavities

VHF-band QWR SRF guns – example BNL SRF gun

electric field distribution in 113 MHz BNL QWR SRF gun, graph taken from Irina Petrushina's (BNL) talk for NAPAC19 L-band SRF guns – example DESY SRF gun

electric field distribution in 1.3 GHz DESY L-band SRF gun, graph generated by Dmitry Bazyl (DESY)

Two types of SRF gun cavities

Electric field distribution – difference between quarter wave resonators and elliptical cavities

VHF-band QWR SRF guns – example BNL SRF gun

L-band SRF guns – example DESY SRF gun

Page 4

L-Band SRF Photoinjector

assumed parameters, archived and demonstrated values, still to be done

pragmatic adaptation of design goal(s)

- form 40 MV/m & $Q_0 = 10^{10}$ to 50 MV/m & $Q_0 = 5x10^9$
- consequences
 - 25 W at 2 K needed for RF
 - 5 W at 2 K reserved for cathode laser
 - design value for cryo-system: 30 W at 2 K
 - we expect getting higher Q_0 but we do not need it
 - higher Q_0 will permit higher $E_{peak on axis}$ and better efficiency
 - we gain margin for combined cavity and cathode treatments
- target QE ≥ 10⁻⁴
 - with QE $\approx 10^{\text{-4}}$ about 5 W laser power for 100 pC & 1 MHz
 - QE \approx 10⁻⁴ demonstrated at LCLS (NC linac)
- still to be done
 - demonstrating low field emission & dark current
 - · demonstrating cathode cooling is fine
 - demonstrating QE \geq 10⁻⁴ in our SC cavities and at about 2 K
 - producing beam

Page 5