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Plan of the talk:

Quantum algebras & applications —

- U,(su,) 2 hadron mass sum rules
-Uy(s0,) 2 (2+1)-dim. Q-gravity; n-dim. Q-gravity,

Deformed algebras & applications —

at hadronic scale = correl. function intercepts of pions

produced at RHICs
at galactic scales = properties of DM (dark matter) of dwarf
galaxies, including galaxy rotation curves



Ostap Parasiuk -- the founder and the first head of department
of Mathematical Methods in Theoretical Physics at the BITP

Prof. acad., Ostap Parasiuk, famous
by his joint with acad. Nikolai
Bogolyubov BP theorem and BP
R-operation in quant. field theory.
His favorite place at BITP was the
library, and his passion, of course
besides books, was most “fresh”
preprints. Those often gave him an

Y 1 inspiration. Once, he was very impre-
(21.12.1921 - 22 11. 2007) ssed by the work of Dirk Kreimer.

In the mid-sixties of 20™ century, of great importance has become the role of
unitary symmetries and group-theoetical methods in general. That produced
very successful classification of hadrons and resonances, appearance of
quark model, imntroducing the concept of color, and growing role of gauge
theories.

In the staff of department, Anatoli Klimyk was “responsible” for symmetry theoryfo’




Prof. Anatoli Klimyk 1nitiated in the Department, which he
headed after Prof. Parasiuk, the research on quantum™ groups
& algebras, their representations (and applications), as well as
properties of deformed oscillator algebras. Involved: Anatoli
Klimyk, Ivan Burban, Alexandre Gavrilik, Ivan Kachurik,
Valentyna Groza, Mykola Iorgov, Yurt Mishchenko, Anastasiia
Rebesh. Later - reserch on deformed models of thermostatistics

(theor. and applied aspects).

*A.Klimyk & K.Schmuedgen, Quantum groups and their
representations, Springer (1997), > 1560 citations 4



Quantum algebras U (su,) and U (u, ;) in hadron
phenomenology

Use g-Algebras U (u, ;), their representations in GZ basis.
Both finite- and infinite-dimensional irreps are used.

U,(su,,) for flavor, U (u,.,) or U,(u, ;) as dynamical symmetries
Application to vector meson mass sum rules (MSRS).
Application to baryon octet/decuplet MSRs

Several implications:

« “Nonperturbative” treatment - account of all-order SU(3)-breaking
effects, beyond 15t & 2" orders in hyperchargeY (in usual scheme).

« Relation with knots (via Alexander polynomials of torus knots)
 Role of g-Serre relations. Use of the Hopf-algebra structure

« Use of anyonic realization in case of decuplet MSRs

« “Best’ value g, linked with Cabbibo angle - then, 6,= /14

« Relation to quark/diquark model of baryons
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QUANTUM ALGEBRA U,(gl,) AND ITS REAL FORMS
We will use the denotion [B], = [B] = (¢® — ¢7%)/(q¢ — ¢~!) where B is either a
number or an operator. The elements 1, Aj;4y, 4,445, Ajy, 7=1,2,...,n -1, A, that

generate the ¢g-deformed (universal enveloping) algebra U, (gl ), satisfy the relations [10]

Aii, Ajj] =0, [Aiiy Ajj+1] = 0ijAij+1 — ij+14;i,

Aiiy Aj1j] = 0ij14ij — 0ij Aj 1,

Aiiv1, Aj1;] = 0i[Aii — Airiti]q,

Aiit1, Ajj] = [Aip1i, Ajp5] =0 for  i—j| 22,
(Aiz1:)*Asiz1 — [2AiztiAiier Az + Az (Aiz10)? =0,
(Ajizr) Aizii — 2 Aiin1 Aizri i + Aiqtlz'(Aii:‘cl)2 = 0.

Endowed with comultiplication, counit and antipode (which we do not reproduce here).

the g-deformed algebra U,(gl,,) becomes a quantum (Hopf) algebra.
‘compact” quantum algebra U, (u,,) is singled out by means of the *-operation

(Aj;)" = Ay, (Aj115)" = Ajjs1, (Ajj41)" = Ajya;

The 'noncompact’ quantum algebra U, (u,, 1), in addition, needs

(g-Serre relations)

(An-l-ln)* = _Ann-{-l: (Ann-}-l))'c = _An-i-lns (An-l-l n+1)* = An-l-l n+l °



A sketch of the irreps of U (su,) and U (u,, ,)

Our approach is insensitive to the substitution Uy (suy,) = Uy(uy, ), and also for Ug(uy, 1).
Finite-dimensional irreps of Ug(u,) are given by sets of

ordered integers m,, = (mqy,, Moy, ..., Mpy)

Note that standard branching rules survive through ¢-deformation,

so we use g-analog of Gel'fand-Zetlin formalism (GZ basis and formulas).
The representations of the algebra U, (uy, 1) are characterized by their signatures , that is,
hy the sets of n + 1 numbers: y = (l;,1s, ....l,—1:¢1, ¢2). Here ¢, ¢y are complex numbers
such that ¢y +c9 € Z, and all the [;, 1 = 1,...n—1, are integers related with the components
mi,ma, ..,Mp—1 = m of the highest weight m of irrep of the subalgebra U, (u,-1), namely,
l; = m;—i—1. The condition on the components of highest weight m terms of [; reads: [{ >
ly > ... > l,—1. Under restriction to the 'compact’ subalgebra U, (uy, ), the representation
T, decomposes into direct sum of all those irreps Ty (1, = (I, lons vos bnn)s Lin = myn — 7,
lln > ll 2> l'Zn > 12 22 ln—ln > ln—l > lnn (each enters with multiplicityl).

(The list of infinite-dim. irreps of U (u,, ;) can be found e.g. in
[A.G., .LKachurik, A.Tertychny, hep-ph/9504233]) In the case of
baryons, some co-dim. irreps of U, (u, ;) were applied




Quantum algebras U (su,) and U_(u,, ;) in
hadron phenomenology

1. g-Algebras U (u, ,), their representations in GZ basis

2. To derive baryons (octet/decuplet) MSRs, we use infinite-
dimensional irreps of “non-compact” dynamical quant.group,

within which calculation is performed. Mass operator is
constructed from “non-compact” generators.

3. At the end, we’ll see that our treatment is in a sense

“Nonperturbative” treatment - account of all-order SU(3)-breaking
effects (beyond 15t & 2"9 orders in hyperch.Y of the usual scheme)

8
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Baryon octet mass g-relation
2] [2)°

2]my + m= = [3/my + ([ T " [3])771;

2] -1
Additional S““c“i;e +( 2lmy +mz — ma — [2]ms)
does arise B,
where qu[z] +[°] (15] — [4]) + [21°([6] — [5]) — [2]([6] + [4]°) + [4]°
B, = 224 +35] - 3]) (12 - 1. A= (2] - 2)[21°(4] = [2])
In factorized form > =([2] - 2)[2]4
’ Corrections are hot small (“nonperturbative”): / _
eITI'/6
Ayx)my + (1 4+ Az)mz = (— — AA 77M + (@—kdmz
_ 1 3]
/ﬁ/ A=t ! AA:)?%{ 37 )
3] 1 .
‘_7% [9]_1 2] 2 77 :%_%_%%
9

Gavrilik & lorgov > confirmed more explicitly, via the terms like 9"




Vector meson mass g-relations and MSRs

In case of VM, adjoint (finite-dim.) irreps. are used. Using dynamical
g-algebras, we derive VM mass g-relations for singlet, triplet and doublet

3 3],
n=3 (flavors) [‘ ]q'nle + (2 — [‘]1> m, = 21 ¢+
2lg 2lq

If g=1, we get famous Gell-Mann — Okubo MSR: 3My,s+m p = dmy -
which requires w-¢ mixing with fitted angle. But,
if g=e™” (and [3] =[2],) 2 Okubo’s nonet MSR:  TTug Tm, = 2m-
This holds ideally with mass m, (1020 MeV) put
in place of 7,5 (no mixing is needed!).

Likewise, for more flavors, e.g.

n=4 (flavors) %m - ( U— — [%[%]l _ 4 ~ —1) m, =
o [4]*

= 2 Mmp«-—+ W %[—] + -) TS+

3
setting [4],=(3], (and [n|,=[n—1],, n=5,6) over-

tJ

simplifies the relations and vields higher analogs 10
of Okubo’s nonet sum rule (isodoublets in r.h.s):




Vector mesons (vect.quarkonia) VS torus knots
Moy +(5 — 8/[2] g )mp =
=2 mp-+ (4 —8/[2 ]q4)mK., A.M.Gavrilik J. Phys. A: Math. Gen.
My +(9 — 16/[2],,)m, Vol.27 No.3, L91 (1994)
=2mp,- + (4 — 8/[-]%)(772.9. + mg-)

The latter MSR, with (mass of) T 1n place of way holds within 0.7%
The Alexander polynomials (AP) naturally appear:

Ag{(2n—1);} of (2n — 1);-torus knots. E.g.,

3], - 2y =C+a7"—a—a7"+1= Ay {51}, [4],-

Bli=¢+a " —¢—q¢ +q+q —T=A {71}

correspond to the 5;- and 7{-knots. Since the @eros of “senior”

+ [3]4 — 1 A{5,} = 14 A{51}A/polynomialsdomatter:

[2]q | [Q]Q A{*r-)’l}‘l'l /
L )l Y (' V1.
n-1j, n -1, 1+ Y00 Mgy

Thus,“senior” AP, by its root, fixes param. ¢ rigidly "



Short summary:

“ VicC U U i

ala
U U X Jdl yJ U V V v v U C U C U .

+» All-order effects (corrections) in flavor SU(3) breaking are taken into account.

¢ Arelation found: flavors (= vect. quarkonia) < torus knots (Alexander pol.).

* Relation: def.param. q € 6, (Cabibbo angle) found, with exact 6,= m/14.

¢ Hopf algebra structure can be used = without new insights.

~

«+ If anyonic realization (and its dual) of U (u,) is used, then <...| My, >.
** Arelation with diquark-quark model of baryons is found.

¢ Use of quantum groups -2 to be extended to other parts of the

standard model. (Some results exist for el.weak sector,
e.qg. P Watts, D.Finkelshtein & others)

12




1. Vector meson MSRs < torus knot invariants (Alexander polynomials)

B torus knots
51, 71, 91, 11; are put into correspondence |

with vector quarkonia ss, cé, bb, and tt res

2. Baryon MSRs: 0, & the value of ¢ (deformation parameter).

3. Highest precision

B anew formula giving quark mass ratio in terms
very precisely known) octet baryon masses:
1Ml g 3:\[2 — :\[A — 3:\[]\]’ —+ :\[E

— — 18.63 = 0.16
1id ;\_[2 — :\[A — ;\_[N — ;’T\[E

which agrees well with value Zl”d =18.9+£0.8

H. Leutwyler, hep-ph/0011049 3



Nonstandard g-algebras U’ (so,)

Advantages: . .
A. Gavrilik, A. Klimyk,

1. Obey canonical embeddings Lett. Math. Phys. - 1991
2. Representations in GZ basis
3. Admit all the noncompact forms and

inhomogen. extensions (Euclid.,Poincare)

4. In quant. geometry -- construction of
quantum spheres S () for any n, & also
other g-coset spaces (Grassm., Stiefel)

5. Appear in (2+1) Anti-de Sitter gravity
6. Applications to n-dim. quantum gravity

/. Many other aspects 14



_

Nonstandard g-algebras U’ (so,) as an alternative
to Drinfeld-Jimbo (standard) quantization of B, D,

In the DJ quantization of U(so,) -> it is impossible to construct irreps using
Gel’fand-Zetlin (GZ) formalism, as the series n=2r+1 and n=2r are quantized
disjointly, while GZ requires canonical embeddings like so,>so,,>so,,...

We use g-numbers, i.e. [1] = (¢" —¢7*)/(¢=q") Wheng>1, [x] > x.
LoD tp—o+ Deotp—ali ot — 2lg Tep—tTk—1 k-2l k1 = —e 142,
izt poTkpt + DepotTi 1o — [2lg Dot p—olip—1Tk—15-2 = —Irp_1,
L i1, Ik,k—l] =0 if |i—Fk|>1, .k =2.3.....n.

real forms - compact U,(so,) and noncompact Uy (so,—11) - are singled out from
U,(so(n,C)) by imposing the s-structures

I;:,k—l = —Ipr—1, k=2,...n, - “compact”
Iijy = —Ikg—1, k=2,..,n—-1, nn—1 = Inn—1 - “non-compact”

A. Gavrilik, A. Klimyk, Lett. Math. Phys. (1991) 15




Remark: besides trilinear, also the bilinear formulation is possible for U’ (so,)

_ Bilinear formulation of U’ (so,)
Limns Tidla = Do Ui Iila = I
I I ], =1; if k>1>m,
15,1, =0 if k>l>m>1p or k>m>p>lI; (2
21

I, L) = (a—a OYUE I, —I5 I if k>m>1>p.

[A.G., N.Iorgov, arxiv:9911201 ]

If n=3, to the set I, I3, we add I3,=[1,,,15,] =q"* 1,15, — q"*I3,15;, and
the other two relations [/;,,1,;] =13, [I5,,15,],=1,;-The result is known as
cyclically symmetric g-algebra [D.Fairlie, J.Ph.4 (1990), A.Odesskii, Func.An.
Apl.(1986)] 16



Signatures and basis

4 3
m,,

m,, 1

{&n} =

e = {my, &1} = {my, my 1,6, 2}

| my
sets m, consisting of || components My M2 s ey M ]
sy T2, ") n

M 9pi1 = M2 2pi = o = Mypopr1 >0, forn = 2p+1

migp > M22p = ... 2 Mp_12p = |Mp2pl-  for n = 2p

MY 2pt1 = M12p = MI2pt1 = M2y 2 ... 2 Mpopil = Mp2p 2 —Mp 2pid,
My2p 2 MY 2p—1 2 M22p > MYp—1 2 oo 2 Mp_12p—1 2 |My9p|.
introduce the so-called [-coordinates
lj,2p+1 =Mjp+1 TP~ j+1, lj,?p =M TP~ J-
Basis element defined by scheme {£,,} is denoted as [{¢,}) or

17




>Inﬁnlteslnml operator [o,+1.9, of the representation, given by moy.1, of Uy(sogy41)
on the GT basis elements acts as

;. A.G., N.lorgov,
[9p4+1,2p| Moyt 1, My, 3 Z »1 mgp )mopy 1, m;pj 3) q-algl9709336 (1997)

—Z 4 me )l may, 41, me 3)

) z 1[12 2p+1‘|'[J?pH22p+1 [J-Q'P_l]

) z¢j li2p + Li2pllli 2p = 2]
1
jop) = ( iplllizp 11 ) 1s the g-deformation of %2 !

where 42p(ggp+1)

At g=1 this is /5

ﬂp] 12p+ ]

Most nontrivial point: how to deform the “classical” coeft. 2 ? Indeed,
g-numbers [}2] or 1/[2] don’t work. But the function d(/; , ) does work!

Likewise the operator Ig,9,_ 1 of the representation, given by my,, of Uj(so)

acts as Iopop—1/mo,, my, 1,) = Zsz ((ma,_4 |mgp,m.2p_1,,3)
with p—1

B,, ,.C, ,obtainedby... ~ D B%p—l (111*2_;)]—1 )[map, mo; g, B)+ 1 Cop1(map_1)|map, M1, ).




Example: gq-Euclidean algebra U’ (iso,), n=3

oy e e ' (4 o
Bilinear formulation of U’ (iso,): A.G., N. lorgov, Symmetry in

o1, Iso), = 13, o1, P3| = 0 Nonlin. Math. Phys. (1997)
I39, 157], = I I3, Pl = 0

131, Io1]q = Is2 13 P = (¢ — ¢ ") (P Is2 — PsIos
139, P3]q — Pz* 21 P‘2+]q = Pf [I:3+1~ P3]q — P1+

Py, I39], = P [P[, I), = Py [Pl 5], = Ps

P3. Pylg= 0 [P, Py =0 [Ps, Pi]g =0

Here -- non-commutativity of translation generators

Similarly constructed g-Poincare algebra contains the g-deformed
Lorentz (sub)algebra and g-commutative subalgebra of momenta

That basically differs from well-known k-Poincare algebri of
J. Lukiersky et al. 1993 (non-deformed Lorentz, momenta subalgs.)




P

2+1 quant.gravity, algebra of Nelson & Regge

Bilinear formulation of U’ (so,,)

:Il-’:?.’ I:i q = I;-m [Ilj; Il:‘*'-m]q = Il-:-n’ A'Gavrilik! UJP (2002)’
arxiv:gr-¢c-0401067
I L], =10 if k>1>m,

L L] =0 if k>I>m>p or k>m>p>l (2

I I = (=g YIG I, ~TE L) if k>m>1>p.

commutator algebra A(n) specific for 2 + 1 quantum
oravity with negative A. For each quadruple of indices

{7,L,k,m}, j,l,k,m=1,...,n, such that
Ak Q1] = [Amj, an] =0, J. Nelson & T, Regge, Phys .Lett. 1991)
ajk, art] = (1 — %) (aj — ana;r),

:ajk-. akm] = (% - 1)(ajm — a’jka'km)a

= , at=—— A<
da+ih . <

K T

ajk, aim] = (K — %) (@jtakm — akiajm)-



2+1 quant.gravity, algebra of Nelson & Regge

Isomorphism of the Algebras A(n) and
U, (son)
Redefine:  1K7*(K = 1) Jar — Ay,

[dentify: Ak — Lik, K —q.

Then, the Nelson Regge algebra A(n)

these two deformed algebras are isomorphic to each oth-
er (of course, for K # 1). Recall that n is linked to the
genus g as n = 2¢+ 2, while K = (4da —ih)/(4a + ih)

with o? = —

e

A.Gavrilik, UJP (2002),
arxiv:gr-qc-0401067
21




Using the g-algebras U’ (so,) for n-dimensions

A sketch of G=SO(n) Spin Networks

A generalized spin network associated with a Lie group G 1s defined
as a triple (I, p, I) where I" 1s an oriented graph (=directed edges and

vertices), p is a labeling of each edge e by an irrep p,of G; [is a
labeling of each vertex v of I by an intertwinner [, mapping
tensor product of irreps incoming at v to the product
of irreps outgoing from wv.

Simple G = SO(n) Spin Networks

consider restricted case of G = SO(n) simple spin net-
works. Simple spin networks associated with G = SO(n)
are evaluated as Feynman integrals over the coset space
SO(n)/SO(n — 1), i.e. over the sphere S™=1. Simplici-
ty means that only the SO(n) representations of class 1

(with respect to SO(n—1)) labeled by single nonnegative
integer [, are employed.

22



_

To such irreps = zonal spherical functions and thus Gegenbauer polynomials.

Basic ingredient 1s the ‘propagator’ expressed it
terms of zonal spherical functions % (y). y = cosf, or
in view of the equality [§]

['(2p)l!
['(2p+1)

directly through the Gegenbauer polynomials:

too (cosf) = CP(cost), p=(N-2)/2, (L

/

Used linearization, recursion relations

S calculatece-gl-;.ll,h (9) A. Freidel, K. Krasnov,
J. Math. Phys. (2001)

23




g-ultraspherical Polynomials

obey the recursion relation:
(1 —¢")Cn(z; Blg) = 22(1 — Bg" " )Cn—1(z; Blg)

—(1—-5%¢""*)Cr2(z:Blg),  (n=2),

along with special values
Co(z:8lg) =1, Ci(x:Blg) = 2(1— B)z/(1 - q).

\\'it,ll the "classical"limit g — 1 vields

! (g_" 3|q) il) C"(:r) T. Sugitani, Compositio Math. (19995)

lllldlh 1S |9| as [()llm\ q:

(e | — (B; Q)k(B; @)n—k pi(n—2k)0
CalziPla) = ,Z;) (4:9)k(q3 @)k

((i‘j Z))n znOZ(I)l( —n 3 3 1 1 -n, g, qB o 2i9).

24



g-ultraspherical Polynomials

where:

. 1, 1=10
(a;q)n = { (1—a)(l—-qa)...(1 —q¢"~ ! a), n>1.

The orthogonality relation

' 5"171
/ Cm(cos®; 3|q)Cr(cosb; Blq)Ws(cosb|q)dd =

h7l(J|Q) ’
where the weight function and normalization factor are:
210 —2i0.
Ws(cosb|q) = (7.0 " 1) (@1, 02 q) 0 = (013 9) 0 (a2;q)c

(30219 30—219 q)x

(4, 8%: @) (4:9)n(1 — Bg™) (a:q)oc == | (1 - ag").
21(B, Bq: q)oo (5% q)n(1 — B) k=0
Then, the g-analog of O-graph (9)
Is calculated, along
with its g-deformed

recursion relation A.Gauvrilik, UJP (2002), arxiv:gr-qc-0401067
Clearly, other more complicated graphs are to be calculated. 25

ho(Blq) =

Linearization (Rogers) formula is to be used




’ From quant. algebras to deformed ones: gen.remarks:

So, various quantum or g-deformed algebras show their efficiency
in diverse problems of quantum physics.

Related with these, deformed oscillators (deformed bosons) as
well play important role in modern physics:

1). If instead of treating particles as point-like structureless
objects, one tends to take into account either nonzero proper
volume or composite nature of particles, then it is natural to
modify or deform the standard commutation relations.

2). Yet another reason to deal with deforrned models is the com-
plication due to nonlinearities and/or (self)interactions. And, there

are other reasons to deal wiith deformed oscillators or models.
26




quantum algebras <-> deformed oscillators

As known, Lie algebra su(2) with relns Jy. Ji| = i']i-, Sy, Jo1=2J,
realizes by 2 copies of harmonic oscillator:{al, aj. .\'1} and {(12 as, N }

AT — N LT — T
[, G ] =1, _-\ y G ] = 6 REALIZATION (Jordan-Schwinger):
| i R R
JO — -; (-\1 — .\2) . J+ = (1.'1(1-2, J_ = (1..'2(.1.1

How to realize quantum algebra Uq(su(Z)) with relations:

-Jo. ji} =tJ:. -\7+ j_} ve to take two copies of

special deformed oscﬂlator{ A, Al,J '1 and {12 12\2} such that

[AAT = gAtA= ¢V, [N, AT = 4]

i.e. BM g-oscillator (Bledenharn Macfarlane)

function of deformation @(N) ElTl . For BM g-oscillator
struct. functions@. Then AAT-A" A o(N+1)- ¢(N)

=[[N+1]]q - [[N]]q

27




Importance of structure function of deformation (DSF)

a'a = p(N). aal = (N +1).

For the ordinary quantum osciIIator: aa’ =N+1. ]

Commutation relation for operators a, a:

aa' —d'a= (N +1) — o(N).

In the g-analog of Fock space:

o) =0, |n) =—==0), Nln)=nln), ¢(N)}n) = pln)n



Structure functions (SF) > deformed oscillators
Diverse types of deformation:

= g- and g.p-oscillators — SFs of exponential type:

N —g" AC if p=1;
q.p-SF (or g.p-bracket): |@p(N) = BM if p=1/q;
P—q TD if p=q; plehtoraif p=f(q);
m So-called p-oscillator (Janussis) — SF of rational type:
N
_u-SF (or u-bracket): @(N) =
1+ uN

m There exist deformed oscillators of polynomial type:

-SF (or E-bracket): L‘Pﬁ(&) =(l+ [‘)N N ﬁ]\}z}

m There exist a plenty of deformed oscillators of hybrid type :

- ~ - - 2
q.u-SF (or .1 -bracket): L‘p[‘*‘/ (n) =+ winly; - u([n]q) = [n][lJ
Below we give applications of deformed bosons of 4-th

and 2-nd types to some micro- and macro-systems,

respectively 29
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Some cases of DOs i.e. their deformation structure function

--- g,p-oscillator:
AAT— i AT = 6 N [N Al =55 AL

; ' qX o pX
A; Ay = [Nillgp [X]gp = P (q,p-bracket)

--= g-oscillators: 1) if p=1 - AC (Arik-Coon) type,
2) if p=q-'- BM (Bied.-Macfarlane) type,
3) if p=q - TD (Tamm-Dancoff) type

— “plethora of 1-parameter” DOs (G., R., MPLA 2008) .

\ _— (u-bracket)

u-oscillator of Jannusis: structure f-n




From deform. Oscillator (DO) to def.
Bose gas model (DBGM)

-- by deforming thermodynamics
sample owybrid DSF in deforming thermodynamics:

'\d : y
[‘;,;,q(z-;)E«,;‘;(Dq}z(l—ﬁ}Dq—ﬁD‘;. Dqs[zz}}
\ “ ) ~ q

-- by deforming distributions & correlations

the same hybrid DSF in deforming distributions and correl.
functions:

ey - - 2
[(pa.q(n) = (1+ Wnly = i(lnly) = [nlg.q}

lintersept of {}Lm ) = {(a) )" (ay)") _ q

correlation function:




1- & 2-particle distributions in g,p-Bose gas model

Ideal gas of def. bosons: thermal averages, one-particle distribution:

(4

H:Z% N-(qp), wiz\/mz-l-kiz
1

Bw _ 1) 1 1
TN G
A = () o g o1
(q,p-Bose) (AC type g-Bose) (Bose)

1-particle distribution 2-particle distribution

1 12 2\ _ (1+q)
Hi—g al6%) = T g) (=

AC type g-Bose <aTa> =

) . Bw_1 2 2\ (Q+q_1)
BM g-Bose <bTb> = egﬁw_(qe+q_1)eﬁw_|_1 <bT be) = (ePw—q2)(ePv—q=2)

1 B eBw_1 2 . -1 ePw_1
q,p-Bose——> <ATA> c (eﬁw(_p)(egzj_q) <AT A2> — (eﬁw_ég)(zzw(_pq)(egw_p%




Two-particle momentum correlation function:
N P (k1. k2)
Py (k1) Pr(kg)
can be rewritten in variables Q = k1 — ky, K = (k1 + ko) /2:
C(Q.K) "= P (Q=0.K) =1+ 2@ (m.K).

A2 intercept of two-particle correlation function.
If assume that the particle are bosons then A2 =1

lal?a?)
Chapman & Heinz, Phys. Lett. B (1994) — | )\D) = mh —_—

ala)

C®(ky, ko) =

For true bosons A =1. unlike deformed analogs of BGM (or DBGM):
in the latter, one- and n-particle distributions depend on the
deformation parameters




> Combined account of two factors
Compositeness: i
SO/I(N):(I‘F/I)N—/:LNQ A = l/m
Avancini,... A.G & Yu.Mishchenko

Particle-particle interactions:
N
q" —1

q-detormation of Arik-Coon type [Ny = 7=
Narayana Swami,... A.G & Yu.Mishchenko

Hybrid (combined) deformation:
d ~ o d
Pii,q (:d__> = 90[1.(0(/) = (1 + H)D(/ — /lD§~ Dq = [:I]
4 <y
for this hybrid model, intercept of 2-particle

correlations was obtained, it reads:
34
| |




> Model with joint account of the two factors

For this 2-param. deformed model, A*) was found
in [A.G., Yu.Mishchenko, Nuc.Phys.B 891,466 (2015)]

k(z) = -1 + - (p/].(/(z)(:—([)(' _q2)
-3, + 01022 - )¢

o

M, )

— ') (2~ ) 2+
( (/)( [l)‘|'((P“/ [](/)(~.‘|‘(] 80/1(1(2) ‘

where 7 = X —ﬂﬁw ﬂ /\BT)

for this hybrid model, intercept of 2-particle
correlations was obtained, namely:
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RHIC/STAR data on two-pion correlations

Phys. Rev. C 71 (2005) 044906  Phys. Rev. C 80 (2009) 024905

0.5-. ?.,
0.4- .
@ — 1¢q=149,1=027, T=91 MeV

03- g=1492, [i=0.269, T=90 MeV
! B 200GeV AutAu [0-51% (n° 1)

021/ ¢ 200 GeV AutAu[0-51% (x 1 1)
100 200 300 400 500 600

K, MeV/c

} Very nice agreement with data achieved in:
| A.G., Yu.Mishchenko, Nuc.Phys.B 891,466 (2015)]

Hence, the (not small) values of g and y withess that
both compositeness and interactions do matter! 36




,E:-Bose gas model, EXACT results}

a‘a =q@uN), - @ructure fun@

\-"
[} )
4

<(l.+(l.> — <[AT],L¢.> - < T \'>
(@*a"aa) = (a"[Nua) = (a7a[N = 1],,) = {[N],[N = 1],.).
— () ::HaTaTuﬂ;_l _ [1]#[1 - :']“:}—1.
" (afa)? ([N],)?
\? = {}a - (i T Piz){me‘? L b - (#i _ ?)fb(e_'ﬁ, 1, Iu_l—'l:]} %

2

K(X'l—#‘lﬂ}fe‘-ﬁ,'wlﬂ'X'l—l, (I—e ) =X (1)

g

Here ® is Lerch transcedent: & =) 2" /(n +a)’
ad

A.G., Yu.Mishchenko, Phys.Lett. A (2012)



| u-Bose gas model, | Intercept 2,,(3):

(aTaTaTaaa) 1
GCE

Intercept of three-particle correlation function: \'® (K )

13 1
A =X {J\ (p+2;z +2;t )‘I’(e Ly ) (;z T )‘I’(e L -1)
3

13 1 . | _
- (;— 0 + 0 )‘I’(e_'j. 1,;1_1—'2)} - (X_l - ;t-_1¢>(e_’3, 1.;1_1)) -1

Here @ is Lerch transcedent: ® =3 " 2" /(n+a)’

@n for r-th order i@

. o =1 (n A~ s
AV = (147 - Y AT ()R Lt - 1))

A. G., Yu. Mishchenko, Phys. Lett. A (2012)



Thermodynamics of u-Bose gas

(deformed) total number of particles:

N=NW=2zD*InZ=—zD} E In(1 — ze P51),

) n -1 n

Deformed partition function: By this, all other thermodyn.
functions can be obtained

Eln 7)) — (z di;;) — vt } N

N) =
Pull)) 1+ uN

]
[A.G., Kachurik, Rebesh’ (correln.) N ¢ ;— (thermodyn.)
2013-2044 | -calculus, o
ftermodyn. of



(detformed) total number of particles:

N=N®¥ =pWnz=—2DH Z In(1 — ze75%),

-E"f My (o} » o
= ﬁ:‘rg (2) +£F|§|H'l-?'j'

deformed partition function:

. d —1 . '|L_f
. (L) o ‘ 'l__u

Here the thermal wavelength and u-polylogarithm are:
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Fig. 4. Dependence of the functions gf, ¢f, ¢5, and gt on
the(fugacity z = exp(5/i)|at u = 0.4




A

» Partition function (u-deformed): 7"z T V) =exp (

Thermodynamics: y-Bose gas

» Critical temperature (u-depend.):

Entropy-per-volume versus
deform. parameter u

s )3
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\
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Fig. 2: R’-ltlﬂ— (times o+

AQ

=) versus deformation parameter p.
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Dependence of the ratic 'TC[HJ;"T,_. on the p-parameter

NB: For greater u (stronger deform.)

— higher 7., and lesser entropy!




Thermodynamical geometry

In 2013, “Infinite statistics condensate as a model of dark matter”
haz been proposed. But, infinite statistics is only one, rather exotic
example of nonstandard statistics.

Diverse DBGMs (earlier known, or developed by us) may, in
principle, as well serve for such a modeling and thus are worth of
being studied.

[AG., Kachurik, Khelashvili and Nazarenko] in: arXiv:1709.05931,
arXiv:1805.02504, and Physica A 506 (2018) explored TG of u-
Bose gas model and confirmed Bose-like condensation. This, and other
results on thermodynamics of the 1-BGM allowed to propose the model
for effective modeling of dark matter.



Thermodynamical geometry of y-Bose gas model
in 2-dim. space with coordinates [,8, V=-U ,8}

) U\ 15 V
(7.3-'3 = = )2 = 29
e 0 N 4 A3 “
RT | o 1/ [1" Apv




BEC models of Dark Matter (DM)

S.J. Sin, Phys. Rev. D 50 (1994) 3650
C.G. Boehmer and T. Harko, JCAP 0706 (2007) 025,

core—cusp problem, settled in:

T. Harko, JCAP 05 (2011) 022.

A review on BEC DM models:

A. Suarez, V.H. Robles and T. Matos, Astrophysics and Space Science
Proceedings, vol. 38, Springer, 2013, p. 107.

S.F. Guzman et al., JCAP 09 (2013) 034.

(gravit. collapse problem)



In BEC models of Dark Matter:

s M= 2REpe

Gm3’ T

R =

In our u—Bose gas model, at:

o ~ 1.895, we obtain the relation
gas2(1) = 3.3535 gg,>+ (1)
Due to this,

the (eritical) volume-per-particle in the case of p-deformed thermﬂ{i}-’nam—

ics: L—Agfgm( ). It means that pm] (5’3@ )/gm )) and therefore

M) (gg ﬂ( )/ g ﬂ( )H will play the role of new corrected characteris-

tics. Since gg Hr%(l) < gg f'ﬁilj at g = (), these predictions can give instead of

MBEC = MW a better agreement with the observational data.



Rotational curves in u-deformed approach
Use the u-derivative (via u-bracket)

d
piw =|| 4 dz _d(_ui+ ii_m)
dr| — 1 + 1 dd dx dx dzr dx
to construct u-deformed Lane-Emden equation:

[ lz Dy (r*DEp(r)) + k2p(r) = 0} p(0) = pe. p'(0) =0

r

Then its solution is: [Note that while 77 dx sin, () # cosy,(z)

. sin, (kr) Dt sin, (x) = cos,(x
:'Oc[l]” lk/ u(#) = ou, )

N~ 2n
Here [Sllll , T = E (—1)" 5 J From density profile
n=0 [ n] He mwe obtain rotation
~—_ "
x = Kkr curves




Rotational curves in g-deformed approach:

v (km/s)

401

0

M81dwB

111111111111111111111

k, kpc™* @ X2
DDO 53 32.27 0.97 0.180 1.9
MS81dwB 38.35 2.64 0.180 2.5

A.G., I.Kachurik. M.Khelashvili,
Ukr. J. Phys. Vol.64 (11) (2019),
arXiv: 1910.1 6

with data better than NFW,
and BECDM (Harko)
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New deformed Heisenberg algebra

** In the usual BEC model (Harko), the two shapes of LEE
(Lane-Emden equation): based on Laplace-Beltrami,
or (2" +1st)-order derivatives, are equivalent=—>
l.e. possess the same solution

*» If u-deformed analogs of Lane-Emden equation are
built, the situation is different: to get equivalence,
coefficients in the latter form should be replaced by
certain functions of r and def. parameter u

¢ From their equivalence — derive new u-deformed analog

of Heisenberg algebra

(main implications — both minimal and maximal uncertainties of

position and momentum) .




Two versions of y-deformed Lane-Emden eqgn.

= %D# (r*Dyp(r)) + k2 p(r) =0
—2 .o\,
= (I)f!‘-"l)‘,"-’+r D) k-) p(r) =0

() 1 - 21.2.2
g, (r)= : (l——“u*k*r‘),

-/ 1-7“

The two eqgns.are equivalent --
common solution is sin (kr)/kr

gp(r) —1, h“(l’) —1
ifp — 0

——  1+2u | — 2 kr
hy(r)= ’—’712 .

1 —2u * (1+u)(1-2u)

From equivalence - new py-deformed Heisenberg algebra
o(x) x D_(,;”) - D_(f) x=-A(x),

o'(x) — L

»

D
28

[(I—Z.u)(lw) a

1+u(3+2u°x%)

I+ p—(1—p) u*x?

B (1+a)h, - ul2+u(1+u2x?)]

(1-0)
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Deformed sine, cosine, and p-spherical functions

o0 2n+1 o0 n
- ' n z S n £
singzr =) (—1) , cosyr= ) (—1)
2n+ 1|, 2n|,,!
~ ll‘ ' ,“.
n=_( n=I(
0.8+ —u=0.1 A - 0.8- p=0.1 (A) 1
0.6- — u=0.25 ) 0.6- p=0.25 A
—_ —— u=0.4 —_ n=0.4
x 0.4 s X 0.4-
< 0.2 1 g702]
? o e ? 0]
0.2 ] 0.2-
-0.41 ] 04]
71 RS B B B SEM RN S 14
0.8- B 0.8
0.6* B 06-
< 0.4 | = 04
;10.2- =0.2
g 0 g o
0.2 0.2
0.4 0.4
-0.6- 0.6 .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
X X

A.G., |l. Kachurik, A.Nazarenko,
Frontiers in Astronomy and
Space Sciences (2023)

+ |o(x) x P— Px =iA (x)|
5

1
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L.Perivolaropoulos,
Phys. Rev. D (2017)
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A.G., |. Kachurik, A.Nazarenko,
Frontiers ... (2023)
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Minimal and maximal position/momentum uncertainties
from u-HA
P

TABLE 2 The parameters for the dark matter halos of dwarf galaxies.

(M)inckpe (8P, 10%eV/c (AP, 10V

M81dwB 0.18 264 0.398 0.193 1438 6.75
DDO 53 0.18 0.97 1.082 0.526 5.28 243
1C2574 0.179 0.17 6.18 30 0.926 0435
NGC 2366 0.178 0.37 284 1.38 202 0.946
HOI 0.151 127 0.830 0.402 6.98 333

While Perivolaropoulos relates max.position uncertainty with cosmological

horizon, in our case (Ar), .. , as seen from table, refers to galactic scales 53




Remark: we dealt with various q- or u-deformed functions, e.qg.

p

* g-Polynomials (related to Alexander polynomials (= torus knot invariants)

* g-deformed Gegenbauer polynomials

* Lerch transcendents (in correlation functions of u-bosons, and in
thermodynamical geometry of infinite statistics gas)

* u-deformations, e.g., u-sin, u-cos, u-Bessel, u-(poly)logarythms

for which 2 omyl\L) 7 COS,\T) Df sin,(r) = cos,(z)

5 [ d £ d d ,dd

HULLENS D¥ = |— = (1 — p— At p—— - )
dr) - 14 pr-  dr dx dr dx

- 54




Thanks for your
attention!
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