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Plan of the talk: 
 
    Quantum algebras & applications – 
           
            - Uq(sun) à  hadron mass sum rules 
            - Uq(son) à  (2+1)-dim. Q-gravity; n-dim. Q-gravity, 
 
    Deformed algebras & applications – 
           
    at hadronic scale à   correl. function intercepts of pions  
                                        produced at RHICs 
    at galactic scales à properties of DM (dark matter) of dwarf     
                                    galaxies, including galaxy rotation curves 
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In the mid-sixties of 20th century, of great importance has become the role of 
unitary symmetries and group-theoetical methods in general. That produced 
very successful classification of hadrons and resonances, appearance of 
quark model, introducing the concept of color, and growing  role of gauge 
theories. 
In the staff of department, Anatoli Klimyk was “responsible” for symmetry theory. 
 

Prof. acad., Ostap Parasiuk, famous 
by his joint with acad. Nikolai 
Bogolyubov BP theorem and BP  
R-operation in quant. field theory. 
His favorite place at BITP was the 
library, and his passion, of course 
besides books, was most “fresh” 
preprints. Those often gave him an 
inspiration. Once, he was very impre-
ssed by the work of Dirk Kreimer. (21.12.1921 - 22.11.2007) 

Ostap Parasiuk -- the founder and the first head of department 
of Mathematical Methods in Theoretical Physics at the BITP 
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Prof. Anatoli Klimyk initiated in the Department, which he 

headed after Prof. Parasiuk,  the research on quantum* groups 

& algebras, their representations (and applications), as well as 

properties of deformed oscillator algebras. Involved: Anatoli 

Klimyk, Ivan Burban, Alexandre Gavrilik, Ivan Kachurik, 

Valentyna Groza, Mykola Iorgov, Yuri Mishchenko, Anastasiia 

Rebesh. Later - reserch on deformed models of thermostatistics 

(theor. and applied aspects).  

*A.Klimyk &  K.Schmuedgen, Quantum groups and their 
representations, Springer (1997),  > 1560 citations 



Quantum algebras Uq(sun) and Uq(un,1) in hadron 
phenomenology 

1.  Use q-Algebras Uq(un,1), their representations in GZ basis. 
2.  Both finite- and infinite-dimensional irreps are used. 
3.  Uq(sun) for flavor, Uq(un+1) or Uq(un,1) as dynamical symmetries 
4.  Application to vector meson mass sum rules (MSRs).  
5.  Application to baryon octet/decuplet MSRs 
6.  Several implications: 
•  “Nonperturbative” treatment à account of all-order SU(3)-breaking 

effects, beyond 1st & 2nd orders in hyperchargeY (in usual scheme). 
•  Relation with knots (via Alexander polynomials of torus knots) 
•  Role of q-Serre relations.  Use of the Hopf-algebra structure 
•  Use of anyonic realization in case of decuplet MSRs 
•  “Best” value q7 linked with Cabbibo angle à then, θC = π/14 
•  Relation to quark/diquark model of baryons 
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, in addition, needs  

(q-Serre relations) 
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A sketch of the irreps of Uq(sun) and Uq(un,1) 

(each enters with multiplicity1).  

(The list of infinite-dim. irreps of Uq(un,1) can be found e.g. in 
[A.G., I.Kachurik, A.Tertychny, hep-ph/9504233])  In the case of 
baryons, some ∞-dim. irreps  of Uq(un,1) were applied 



Quantum algebras Uq(sun) and Uq(un,1) in 
hadron phenomenology 

1.  q-Algebras Uq(un,1), their representations in GZ basis 
 
 2. To derive baryons (octet/decuplet) MSRs, we use infinite-

dimensional irreps of “non-compact” dynamical quant.group, 
     within which calculation is performed. Mass operator is  
     constructed from “non-compact” generators. 
  
3.  At the end, we’ll see that our treatment is in a sense 
      “Nonperturbative” treatment à account of all-order SU(3)-breaking 

effects (beyond 1st & 2nd orders in hyperch.Y of the usual scheme) 
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Baryon octet mass q-relation 
. 
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Additional structure  

does arise           à  

 
 
!!  

Corrections are not small (“nonperturbative”): 

 
 
 
 
In factorized form à  

 
 
 
 
where  

 
 
 
 
zero if q=eiπ/6 

Gavrilik & Iorgov   à  confirmed more explicitly, via the terms like qY 
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Vector meson mass q-relations and MSRs 
In case of VM, adjoint (finite-dim.) irreps. are used.  Using dynamical  
q-algebras, we derive VM mass q-relations for singlet, triplet and doublet  

n=3 (flavors) 

n=4 (flavors) 

If q=1, we get famous Gell-Mann – Okubo MSR:  
which requires ω-ϕ mixing with fitted angle. But,  
if q=eiπ/5 (and [3]q=[2]q) à Okubo’s nonet MSR: 
This holds ideally with mass mϕ (1020 MeV) put 
in place of          (no mixing is needed!). 
    Likewise, for more flavors, e.g.   
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Vector mesons (vect.quarkonia) VS torus knots 

Thus,“senior”AP, by its root, fixes param. q rigidly 

The latter MSR, with (mass of)                             , holds within 0.7%  
The Alexander polynomials (AP) naturally appear: 

Zeros of “senior”  
polynomials do matter: 

A.M.Gavrilik J. Phys. A: Math. Gen.  
Vol.27 No.3, L91 (1994) 
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Short summary: 
v  Mass sum rules for mesons & baryons of very high precizion are gained. 

v  All-order effects (corrections) in flavor SU(3) breaking are taken into account. 

v   A relation found: flavors (= vect. quarkonia) ↔ torus knots (Alexander pol.).   

v   Relation:  def.param. q ↔ θC (Cabibbo angle) found, with exact  θC = π/14. 
v   Hopf algebra structure can be used à without new insights. 

v   If anyonic realization (and its dual) of Uq(un) is used, then  <…| MDi …>.  

v  A relation with diquark-quark model of baryons is found. 

v  Use of quantum groups à to be extended to other parts of the        
     standard model. (Some results exist for el.weak sector,  
                                   e.g. P. Watts, D.Finkelshtein & others) 
 
 
 



 torus knots  
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which agrees well with value 

   
  1. Vector meson MSRs ↔ torus knot invariants (Alexander polynomials) 
 
 
 
 
 
2. Baryon MSRs:  θC & the value of  q (deformation parameter).  

 3. Highest precision 
 
 
 



Nonstandard q-algebras U'q(son) 

1.  Obey canonical embeddings 

2.  Representations in GZ basis 

3.  Admit all the noncompact forms and       

      inhomogen. extensions (Euclid.,Poincare)  

 4.   In quant. geometry -- construction of 
quantum spheres Sq

(n) for any n, & also 
other q-coset spaces (Grassm., Stiefel) 

 5. Appear in (2+1) Anti-de Sitter gravity  

 6. Applications to n-dim. quantum gravity 

7. Many other aspects 

A. Gavrilik, A. Klimyk,  
Lett. Math. Phys. - 1991 
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Advantages: 
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Nonstandard q-algebras U'q(son) as an alternative 
to Drinfeld-Jimbo (standard) quantization of Br , Dr 

We use q-numbers, i.e. When qà1,  [x] à x.  

-- “compact” 

     -- “non-compact” 

In the DJ quantization of U(son) ! it is impossible to construct irreps using 
Gel’fand-Zetlin (GZ) formalism, as the series n=2r+1 and n=2r are quantized 
disjointly, while GZ requires canonical embeddings like  son > son-1 > son-2 … 

A. Gavrilik, A. Klimyk, Lett. Math. Phys. (1991) 
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If n=3, to the set I21, I32 we add I31≡[I21,I32]q=q1/2I21I32 – q-1/2I32I21, and 
the other two relations [I31,I21]q=I32,  [I32,I31]q=I21.The result is known as 
cyclically symmetric q-algebra [D.Fairlie, J.Ph.A (1990), A.Odesskii, Func.An. 
Apl.(1986)] 

[А.G., N.Iorgov, arxiv:9911201 ] 

Bilinear formulation of U'q(son) 

Remark: besides trilinear, also the bilinear formulation is possible for U'q (son)   

I21 
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Signatures and basis  
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is the q-deformation of ½ !  

Most nontrivial point: how to deform the “classical” coeff. ½ ?  Indeed,  
q-numbers [½] or 1/[2] don’t work. But the function d(lj,2p) does work!   

At q=1 this is ½ 

Likewise  

acts as on the 

where 

B2p-1, C2p-1 obtained by… 

acts as  
, with 

A.G., N.Iorgov,  
q-alg/9709036 (1997)    



Example:  q-Euclidean algebra U'q(ison),  n=3 

19 

Here	--	non-commutativity	of	translation	generators	
Similarly	constructed	q-Poincare	algebra	contains	the	q-deformed	
Lorentz	(sub)algebra	and	q-commutative	subalgebra	of	momenta	

That	basically	differs	from	well-known	κ-Poincare	algebra	of	
J.	Lukiersky	et	al.	1993	(non-deformed	Lorentz,	momenta	subalgs.)	

Bilinear formulation of U'q(ison): 
A.G., N. Iorgov, Symmetry in 
Nonlin. Math. Phys. (1997)    
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2+1 quant.gravity, algebra of Nelson & Regge 
Bilinear formulation of U'q(son) 

A.Gavrilik, UJP (2002),  
arxiv:gr-qc-0401067    

J. Nelson & T, Regge, Phys .Lett. 1991)    
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2+1 quant.gravity, algebra of Nelson & Regge 

A.Gavrilik, UJP (2002),  
arxiv:gr-qc-0401067    
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Using the q-algebras U'q(son) for n-dimensions 

       A sketch of G=SO(n) Spin Networks 
A generalized spin network associated with a Lie group G is defined 
as a triple (Γ, ρ, I) where Γ is an oriented graph (=directed edges and 
vertices), ρ is a labeling of each edge e by an irrep ρe of G; I is a   
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To such irreps à zonal spherical functions and thus Gegenbauer polynomials.  

A. Freidel, K. Krasnov,  

J. Math. Phys.  (2001) 

Used linearization, recursion relations 
à calculated   
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 obey the recursion relation:  

T. Sugitani, Compositio Math. (1995)  
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 where:  

 The orthogonality relation 

 where the weight function and normalization factor are:  

 Then, the q-analog of 
 is calculated, along 
with its q-deformed  

recursion relation   

Clearly, other more complicated graphs are to be calculated.    

Linearization (Rogers) formula is to be used 

A.Gavrilik, UJP (2002), arxiv:gr-qc-0401067    
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So, various quantum or q-deformed algebras show their efficiency 

in diverse problems of quantum physics.     

Related with these, deformed oscillators (deformed bosons) as 

well play important role in modern physics: 

1).  If instead of treating particles as point-like structureless 

objects, one tends to take  into account either nonzero proper 

volume or composite nature of particles, then it is natural to 

modify or deform the standard commutation relations.  

2). Yet another reason to deal with deforrned models is the com-

plication due to nonlinearities and/or (self)interactions. And, there 

are other reasons to deal wiith deformed oscillators or models. 

I 

  From quant. algebras to deformed ones: gen.remarks:  
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As known, Lie algebra su(2) with relns. 
realizes by 2 copies of harmonic oscillator:   

quantum algebras "! deformed oscillators  
                  

How to realize quantum algebra Uq(su(2)) with relations: 

                                                                 ?   We have to take two copies of 

special deformed oscillator                                                      such that 

i.e. BM q-oscillator (Biedenharn-Macfarlane)    
Another (but equival.) presentation – using structure 
function of deformation φ(N) ≡         .   For BM q-oscillator 
struct. functions [[N]]q. Then                  = φ(N+1)- φ(N)           
=[[N+1]]q - [[N]]q  
     

REALIZATION  (Jordan-Schwinger):     

  

  

  



 Importance of structure function of deformation  (DSF)  
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■ q- and q,p-oscillators – SFs of exponential type: 
 
 
■ So-called µ-oscillator (Janussis) – SF of rational type:  
 
 
■ There exist deformed oscillators of polynomial type: 
 
 
■ There exist a plenty of deformed oscillators of hybrid type : 
 
 

 Structure functions (SF) ! deformed oscillators  
                  

Below we give applications of deformed bosons of 4-th 
and 2-nd types to some micro- and macro-systems, 
respectively    

     

Diverse types of deformation:     

q,p-SF (or q,p-bracket):  

 µ-SF (or µ-bracket): 

µ-SF (or µ-bracket): 

q,µ-SF (or q,µ -bracket): 

( )
1
NN
N

ϕ
µ

=
+

( )
N Np qN
p q

ϕ
−

=
−

AC    if p=1; 
BM   if p=1/q;       
TD   if p=q;    plehtora if p=f(q);  

~  

~  ~  

~  



Some cases of DOs i.e. their deformation structure function 
       
     --- q,p-oscillator:                                          

 
                                

                                                                             (q,p-bracket) 
 

     --- q-oscillators: 1) if  p=1  -  AC (Arik-Coon) type, 
                                  2) if  p=q.

-1- BM (Bied.-Macfarlane) type, 
                                  3) if  p=q  - TD (Tamm-Dancoff) type  

 
– “plethora of 1-parameter” DOs  (G., R., MPLA 2008) .  

                                                          
 

 µ-oscillator of Jannusis:   structure f-n  

(µ-bracket)  

( )
1
NN
Nµϕ µ

=
+



From deform. Oscillator (DO) to def. 
Bose gas model (DBGM) 

 -- by deforming thermodynamics 
 sample of hybrid DSF in deforming thermodynamics: 
 

 -- by deforming distributions & correlations 
  the same hybrid DSF in deforming distributions and correl. 

functions: 
 

Іintersept of 
correlation function:     



1-  &  2-particle distributions in q,p-Bose gas model 
Ideal gas of def. bosons:  thermal averages, one-particle distribution:  

(AC type q-Bose) (q,p-Bose) (Bose) 

 q,p-Bose→ 

AC type q-Bose 

BM q-Bose 



Chapman	&	Heinz,			Phys.	Lett.	B	(1994)  λ2) 

  

For true bosons λ(2) =1, unlike deformed analogs of BGM (or DBGM): 
in the latter, one- and n-particle distributions depend on the 
deformation parameters  
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Combined account of two factors 

Compositeness: 

for this hybrid model, intercept of 2-particle 
correlations was obtained, it reads: 

Particle-particle interactions: 

Hybrid  (combined)  deformation: 

Avancini,… A.G & Yu.Mishchenko 

Narayana Swami,… A.G & Yu.Mishchenko 
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Model with joint account of the two factors 

where 

for this hybrid model, intercept of 2-particle 
correlations was obtained, namely: 

For this 2-param. deformed model, λ(2) was found 

 in [A.G., Yu.Mishchenko, Nuc.Phys.B 891,466 (2015)]  



Hence,  the (not small) values of q and µ witness that 
both compositeness and interactions do matter!  36 

RHIC/STAR data on two-pion correlations 

Very nice agreement with data achieved in: 
[A.G., Yu.Mishchenko, Nuc.Phys.B 891,466 (2015)]  



( ),a a Nµϕ+ − = Structure function  
µ-Bose gas model, EXACT results: 

A.G., Yu.Mishchenko, Phys.Lett. A (2012) 

Intercept λµ
(2):  

(1) 



Expression for  r-th order intercepts: 

µ-Bose gas model, 

A.	G.,	Yu. Mishchenko,			Phys.		Lett.		A		(2012)  

 Intercept λµ(3): 



(deformed) total number of particles: 

 Deformed partition function: 

Thermodynamics of  µ-Bose gas 

By this, all other thermodyn.  
functions can be obtained 

( )
1
NN
Nµϕ µ

=
+

[A.G., Kachurik, Rebesh’ 
2013-2014 ]    -calculus, 
thermodyn. of          
   -Bose gas, e.g.  arxiv: 

 (correln.)               (thermodyn.)  



 (deformed) total number of particles: 

 deformed partition function: 

Here the thermal wavelength and  µ-polylogarithm are: 

  



 
 



Thermodynamics:  µ-Bose gas 

•  Partition function (µ-deformed):  

•  Critical temperature (µ-depend.):  

 
 

 
 
 
 
 

Entropy-per-volume versus                     
deform. parameter µ 

NB: For greater µ (stronger deform.)     
→ higher Tc , and  lesser  entropy! 



Thermodynamical geometry 

    
 

In 2013, “Infinite statistics condensate as a model of dark matter”  
    haz been proposed. But, infinite statistics is only one, rather exotic 
example of nonstandard statistics.   
 
Diverse DBGMs (earlier known, or developed by us) may, in 
principle, as well serve for such a modeling and thus are worth of 
being studied.  
 
[AG., Kachurik, Khelashvili and Nazarenko]  in: arXiv:1709.05931,  
arXiv:1805.02504, and Physica A 506 (2018)              explored TG of µ-
Bose gas model and confirmed Bose-like condensation. This, and other 
results on thermodynamics of the µ-BGM allowed to propose the model 
for effective modeling of dark matter. 



Thermodynamical geometry of µ-Bose gas model          
in 2-dim. space with coordinates  β,  γ = - µ β 

  

  

  

      

Recall that µ-polylogarithm  is:  

  



BEC models of Dark Matter (DM) 

core–cusp problem, settled in: 

A review on BEC DM models: 

(gravit. collapse problem) 



In BEC models of Dark Matter: 

In our µ–Bose gas model, at: 

Due to this, 



 Then its solution is:              [Note that while  

Use the µ-derivative (via µ-bracket) 

to construct µ-deformed Lane-Emden equation: 

Here 

Rotational curves in µ-deformed approach 

From density profile 
ρ(kr) we obtain rotation 
curves 
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Rotational curves in µ-deformed approach:   

Our curves (solid) agree 
with data better than NFW, 
and BECDM (Harko)  

A.G., I.Kachurik. M.Khelashvili, 
Ukr. J. Phys. Vol.64 (11) (2019), 
arXiv: 1910.10796  

deform. 
param.  
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New deformed Heisenberg algebra 
 
v  In the usual BEC model (Harko), the two shapes of LEE 
					(Lane-Emden	equation):	based	on	Laplace-Beltrami,	
					or	(2nd	+1st)-order	derivatives,	are	equivalent			
					i.e.	possess	the	same	solution 
v 	If	µ-deformed	analogs	of	Lane-Emden	equation	are			
					built,	the	situation	is	different:	to	get	equivalence,						
						coefficients	in	the	latter	form	should	be	replaced	by 
      certain	functions	of	r	and	def.	parameter	µ	
v   From their equivalence – derive new µ-deformed	analog			
							of	Heisenberg	algebra 
(main implications – both minimal and maximal uncertainties of 

position and momentum)  



50 

Two versions of µ-deformed Lane-Emden eqn. 

From equivalence ! new µ-deformed Heisenberg algebra 

 
  
 

 
  
 

 
  
 

 
  
 

    

gµ(r) →1, hµ(r) →1 
if µ → 0  

  
 

 
  
 

The two eqns.are equivalent --  
common solution is sinµ(kr)/kr 



Deformed sine, cosine, and µ-spherical functions 
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A.G., I. Kachurik, A.Nazarenko, 
Frontiers in Astronomy and 
Space Sciences (2023) 
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L.Perivolaropoulos, 
Phys. Rev. D (2017) 

A.G., I. Kachurik, A.Nazarenko, 
Frontiers … (2023) 
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While Perivolaropoulos relates max.position uncertainty with cosmological 
horizon, in our case (Δr)max , as seen from table, refers to galactic scales 

Minimal and maximal position/momentum uncertainties              
                from µ-HA 
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•  q-Polynomials (related to Alexander polynomials (= torus knot invariants) 

•  q-deformed Gegenbauer polynomials 

•  Lerch transcendents (in correlation functions of µ-bosons, and in    

   thermodynamical geometry of infinite statistics gas) 

•   µ-deformations, e.g., µ-sin, µ-cos, µ-Bessel, µ-(poly)logarythms 

 

 

Remark: we dealt with various q- or µ-deformed functions, e.g.  

for which 

where 

–– 
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Thanks for your 
attention! 


