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Outline of talk

General remarks on point interactions in one dimension.
Discussion on 1D Schrödinger equation with δ′(x)
potential.
Resonant tunneling through one-point (singular) potentials.
Existence of bound states in δ′(x) potential.
Point approximation of well-shaped potential revisited.
Conclusions.
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Point interactions in one dimension

Advantages of point interactions (PIs):
Shrinking a system to isolated points (set of Lebesgue’s
measure zero) leads to exactly solvable models.
These models are referred to as ‘point’ (contact or
zero-range) interactions (PIs).
Resolvents and spectra of Schrödinger operators,
scattering coefficients and other characteristics can
analytically be computed.
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Connection matrix

1D Schrödinger equation:

−ψ′′(x) + V (x)ψ(x) = Eψ(x).

If a PI is located at x = 0, it is identified by the two-sided
boundary conditions: ψ(±0) and ψ′(±0).

Example

V (x) = αδ(x) potential, δ(x) is Dirac’s delta function:

ψ(+0) = ψ(−0) =: ψ(0), ψ′(+0)− ψ′(−0) = αψ(0).

These boundary conditions can be written through a
connection Λ-matrix:(

ψ(+0)
ψ′(+0)

)
= Λ

(
ψ(−0)
ψ′(−0)

)
, Λ =

(
1 0
α 1

)
.
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Point interactions in one dimension

All non-trivial PIs (at x = ±0) can be described by coupling
(four-parametric) conditions (non-separated):(

ψ(+0)
ψ′(+0)

)
= Λ

(
ψ(−0)
ψ′(−0)

)
, Λ = eiχ

(
λ11 λ12
λ21 λ22

)
,

χ ∈ [0, π), λij ∈ R, λ11λ22 − λ12λ21 = 1.
Trivial PIs (acting as a fully reflecting wall) are called
separated.
Example: λ12 = 0, λ11 and λ22 are finite but |λ21| =∞.
Boundary conditions are ψ(±0) = 0.

Albeverio S, Dabrowski L and Kurasov P 1998 Lett. Math. Phys. 45 33.
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Some historical remarks on the δ′-problem

In Phys. Scripta (1994), for 1D Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = Eψ(x), E > 0,

Patil computed transmission probability for

V (x) = γδ′(x), γ ∈ R,

and found that the probability was identically zero.

Regularization of δ′(x) distribution has been done through
Dirac’s delta function δ(x):

δ(x + ε)− δ(x − ε)

2ε
→ δ′(x).

Patil S H 1994 Phys. Scripta 49 645.
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Resonant tunneling through a γδ′(x) potential

Finite barrier-well approximation
(P. L. Christiansen et al.): ∆′ε(x)→ δ′(x),

Countable set of values γ ∈ R in

−ψ′′(x) + γδ′(x)ψ(x) = Eψ(x), E > 0,

where transmission was non-zero.

These values form a resonance set
Σ := {γn}n∈Z with γn’s being the roots
of equation

tan
√
γ = tanh

√
γ .

Beyond Σ (γ /∈ Σ), transmission was shown to be zero.

Christiansen P L, Arnbak N C, Zolotaryuk A V, Ermakov V N and Gaididei Y B
2003 J. Phys. A: Math. Gen. 36 7589.
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Spire-like scenario of appearance of resonant
tunneling

Convergence of transmission probability Tε as ε→ 0 (numerical result):

Tε → 0 occurs almost
everywhere in the γ-space,
but not everywhere!

ε = 0.01 (1, black),
ε = 0.001 (2, red).

P.L. Christiansen, N.C. Arnbak, A.Z., V.N. Ermakov and Y.B. Gaididei
2003 J. Phys. A: Math. Gen. 36 7589.

A.Z. & Y.Z. 2015 J. Phys. A: Math. Theor. 48 035302.
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Šeba’s theorem

In Rep. Math. Phys. , S̆eba proved the theorem saying that for
any regular function V(ξ) such that

∆′ε(x) = ε−2V(x/ε)→ δ′(x) as ε→ 0,

the following norm resolvent convergence:

N.R. lim
ε→0

[
H0 + γ∆′ε(x)

]
= H−0 ⊕ H+

0

took place with boundary conditions ψ(±0) = 0. This means
zero transmission for all γ ∈ R.

Šeba P 1986 Rep. Math. Phys. 24 111.

Clear discrepancy with our results!

Resolved in: Golovaty Y D and Hryniv R O 2010 J. Phys. A: Math. Theor. 43
155204.
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However, Patil’s result where, using the approximation

δ(x + ε)− δ(x − ε)

2ε
→ δ′(x),

he obtained zero transmission for all γ ∈ R, appeared to be correct!

This mismatch can be explained using
separated barrier and well.

Compare both the repeated limits of
transmission Tε(r):

lim
ε→0

lim
r→0
Tε(r) 6= lim

r→0
lim
ε→0
Tε(r).

limε→0 limr→0 Tε(r)→ 0 almost
everywhere, while

limr→0 limε→0 Tε(r)→ 0 everywhere.
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Two-scale regularization of δ(x) potential

Consider an antisymmetric regularization in the form of separated barrier and
well:

∆′lr (x) =
1

l(l + r)


1 for − r/2− l < x < −r/2,
−1 for r/2 < x < r/2 + l,
0, otherwise,

→ δ′(x).
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Transmission matrix

Transmission matrix connecting ψ(x) and ψ′(x) at
x = ±(l + r/2):(

ψ(l + r/2)
ψ′(l + r/2)

)
= Λlr

(
ψ(−l − r/2)
ψ′(−l − r/2)

)
, Λlr =

(
λ11 λ12
λ21 λ22

)
.

The Λlr -matrix can be computed as the product

Λlr = Λ+Λ0Λ−,

Λ± =

(
cos(q±l) (1/q±) sin(q±l)
−q± sin(q±l) cos(q±l)

)
, Λ0 =

(
cos(kr) k−1 sin(kr)
−k sin(kr) cos(kr)

)

q± :=

√
E ± γ

l(l + r)
, γ ∈ R.
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Transmission matrix in the squeezing limit
Specify the squeezing limit on pencil r = clτ , c > 0, τ > 0.
Asymptotically (γ > 0), q+l ∼ σ, q−l ∼ iσ, σ :=

√
γ

1+clτ−1 .
In the l → 0 limit, λ12 → 0, λ11 and λ22 are finite constants,

λ21

cosσ coshσ
∼ σ

l
(tanhσ − tanσ)− σ2r

l2
tanσ tanhσ.

In red region (0 < τ < 1, 1 < τ < 2),
|λ21| → ∞ ⇒ ψ(±0) = 0.
In blue region (τ = 1, 2 < τ <∞),
λ21 → 0.
On boundary black line (τ = 2),
λ21 → − c γ sin

√
γ sinh

√
γ =: α.
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Resonance sets for γδ′(x)potential

Two types of cancellation of divergences occur in λ21 as l → 0.

λ21

cosσ coshσ
' σ

l
(tanhσ − tanσ)

−σ
2r
l2

tanσ tanhσ.

On blue line τ = 1, resonance equation:

tan

√
γ

1 + c
= tanh

√
γ

1 + c

[
1 + c

√
γ

1 + c
tanh

√
γ

1 + c

]−1

, γ ∈ R.

On black line and in blue region (2 ≤ τ <∞), resonance equation:

tan
√
γ = tanh

√
γ .

Resonance sets: Σ := {γn}∞n=−∞.
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Bound states for γδ′(x) potential

Setting

ψ(x) =

{
C1eκx for −∞ < x < x1 ,
C2e−κx for x2 < x <∞,

one can prove a general equation for bound states:

λ12κ
2 + (λ11 + λ22)κ+ λ21 = 0,

where λij -elements in general depend on κ.
Since λ12 → 0 and on the pencil r = c l2, λ21 6= 0,

κ = − λ21

λ11 + λ22
= − α

θ + θ−1 =
c
2
γ tanh2√γ =

c
2
|γ| tanh2

√
|γ| ,

where θ is the limit:

λ11 = λ−1
22 → θ =

cosh
√
γ

cos
√
γ
, γ = γn,n ∈ Z.
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Scenario of appearance of a single bound state

Convergence of bound state levels κi ’s as ε→ 0:

(a) and (b): ‘Pinning’ of the highest energy level, whereas lower levels escape
to −∞; Red lines are analytical solutions.
(c): The highest level tends to zero (r = c l3), while the lower one to −∞.

A.Z. & Y.Z. J. Phys. A: Math. Theor. 54 (2021) 035201 (29pp).
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Conclusions:

Different pathways ∆′ε(x)→ δ′(x) lead to different PIs with
boundary conditions:

separated, Dirichlet type: ψ(−0) = ψ(+0) = 0
(full reflection);

non-separated without bound states:
ψ(+0) = θnψ(−0), ψ′(+0) = θ−1

n ψ′(−0),

θn =
cosh
√
γn

cos
√
γn
, γn ∈ Σ (resonant tunneling);

non-separated with bound states:
ψ(+0) = θnψ(−0), ψ′(+0) = αnψ(−0) + θ−1

n ψ′(−0),
αn = − c γn sin

√
γn sinh

√
γn (resonant tunneling).

Equation −ψ′′(x) + γδ′(x)ψ(x) = Eψ(x) contains a hidden
parameter.
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Point approximation of a well-shaped potential

−ψ′′(x) + V (x)V (x) = Eψ(x), E > 0,

V (x) ≡
{

V , 0 < x < l,
0, otherwise.

V > 0 (barrier), V < 0 (well). Transmission probability:

T =

[
1 +

V 2

4E(E − V )
sin2
(√

E − V l
)]−1

,

Point approximation: V = ε−νv , ν > 0. Only ν = 1 and ν = 2 are appropriate
as ε→ 0.

Tε→0(ν = 1)→ 1
1 + (α/2k)2 , α = vl(strength ofδ(x)), α ∈ R.

T = Tw = lim
ε→0
Tw,ε =

{
1 if

√
d a = nπ,

0 if
√

d a 6= nπ,
n = 1, 2, . . . .

Σ := {d , a |
√

d a = nπ, n = 1, 2, . . .}.
.
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The point approximation of a well-shaped potential

ε = 1 (black),
unsqueezed (realistic);

ν = 2, ε = 0.1 (blue);

ν = 2, ε = 0.01 (red);

ν = 1, ε = 0.01 (green),
δ-approximation.

Conclusion: Both limits: limε→0 Tw,ε(ν = 1) =
[
1 + (α/2k)2]−1

,

limε→0 Tw,ε(ν = 2) =

{
1 if

√
d a = nπ,

0 if
√

d a 6= nπ,
n = 1, 2, . . . ,

are possible for a well. However, limit with ν = 2 is more physically realistic.
Resonance set is Σ := {d , a |

√
d a = nπ, n = 1, 2, . . .}. Potential ε−2V (x/ε)

has no limit as ε→ 0, not even in the sense of (Schwartz) distributions.

Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].
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Influence of a squeezed prewell on tunneling

Bilayer = rectangular well + arbitrary barrier

ρ ≥ 0 (distance)2
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Influence of a squeezed prewell on tunneling

ε = 1 ε = 0.1

T = lim
ε→0
Tw,ε · Tb.

Conclusions:

Controlling of tunneling with tuning parameters of a well.

“Quantization of Tunneling”.

V (x) = V−(x) + V+(x)→ ε−2V−(x/ε) + ε−1V+(x/ε).

Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].
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Dirac-like pseudospin-one structures

The 1D pseudospin-one Hamiltonian H = H0 + V (x):

H0 = −iSy
d
dx

+ mSz , Sy =
1√
2

 0 − i 0
i 0 − i
0 i 0

 , Sz =

 1 0 0
0 0 0
0 0 − 1

 ,

V (x) =

 V11(x) 0 0
0 V22(x) 0
0 0 V33(x)

 .

 0
V
0

  V
0
V



A.Z., Y.Z., V.P. Gusynin, Bound states and point interactions of the one-dimensional
pseudospin-one Hamiltonian, J. Phys. A: Math. Theor. 56 (2023) 485303 (33pp).
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More conclusions

Resonant tunneling through one-point (singular) potentials
is a new phenomenon in the domain of point interactions.
Enhancement of resonance properties with shrinking a
nanosystem. This might be used for fabricating electronic
devices. Spire-like picture is remarkable.
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More conclusions

Different regularizations of δ′(x) distribution produce
different transmission properties of equation

−ψ′′(x) + γδ′(x)ψ(x) = Eψ(x).

Therefore this equation does not make any physical sense
if considered alone (warning for physicists!), contrary to
equation

ψ′′(x) + αδ(x)ψ(x) = Eψ(x).

The equation with δ′(x) distribution contains a hidden
parameter. Family of regularization pathways can be
considered as this parameter.
Squeezed regular potentials themselves may or not may
have a shrinking limit, even in the sense of distributions.
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