Singular perturbations and solvable models in one-dimensional quantum mechanics

Alexander Zolotaryuk

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine

March 4, 2025

The KMPB-Ukraine Workshop Berlin, March 4–6, 2025

Outline of talk

- General remarks on point interactions in one dimension.
- Discussion on 1D Schrödinger equation with δ'(x) potential.
- Resonant tunneling through one-point (singular) potentials.
- Existence of bound states in $\delta'(x)$ potential.
- Point approximation of well-shaped potential revisited.
- Conclusions.

Point interactions in one dimension

Advantages of point interactions (PIs):

- Shrinking a system to isolated points (set of Lebesgue's measure zero) leads to exactly solvable models.
- These models are referred to as 'point' (contact or zero-range) interactions (PIs).
- Resolvents and spectra of Schrödinger operators, scattering coefficients and other characteristics can analytically be computed.

Connection matrix

1D Schrödinger equation:

$$-\psi''(\mathbf{x})+V(\mathbf{x})\psi(\mathbf{x})=E\psi(\mathbf{x}).$$

If a PI is located at x = 0, it is identified by the two-sided boundary conditions: $\psi(\pm 0)$ and $\psi'(\pm 0)$.

Example

 $V(x) = \alpha \delta(x)$ potential, $\delta(x)$ is Dirac's delta function:

$$\psi(+0) = \psi(-0) =: \psi(0), \ \psi'(+0) - \psi'(-0) = \alpha \psi(0).$$

These boundary conditions can be written through a connection Λ -matrix:

$$\left(\begin{array}{c}\psi(+0)\\\psi'(+0)\end{array}\right)=\Lambda\left(\begin{array}{c}\psi(-0)\\\psi'(-0)\end{array}\right),\quad\Lambda=\left(\begin{array}{c}1&0\\\alpha&1\end{array}\right).$$

(a) < (a) < (b) < (b)

Point interactions in one dimension

 All non-trivial PIs (at x = ±0) can be described by coupling (four-parametric) conditions (non-separated):

$$\left(\begin{array}{c}\psi(+0)\\\psi'(+0)\end{array}\right) = \Lambda \left(\begin{array}{c}\psi(-0)\\\psi'(-0)\end{array}\right), \ \ \Lambda = e^{i\chi} \left(\begin{array}{c}\lambda_{11} & \lambda_{12}\\\lambda_{21} & \lambda_{22}\end{array}\right),$$

$$\chi \in [0,\pi), \ \lambda_{ij} \in \mathbb{R}, \ \lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21} = 1.$$

- Trivial PIs (acting as a fully reflecting wall) are called separated.
- Example: $\lambda_{12} = 0$, λ_{11} and λ_{22} are finite but $|\lambda_{21}| = \infty$.
- Boundary conditions are $\psi(\pm 0) = 0$.

Albeverio S, Dabrowski L and Kurasov P 1998 Lett. Math. Phys. 45 33.

Some literature:

- F.A. Berezin and L.D. Faddeev, *Dokl. Akad. Nauk SSSR* 137, 1011 (1961) [*Sov. Math. Dokl.* 2, 372 (1961)].
- Y.N. Demkov and V.N. Ostrovskii, *Zero-Range Potentials and their Applications in Atomic Physics* (Leningrad University Press, 1975) [Plenum Press, NY, 1988].
- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics (Springer, Berlin, 1988).
- S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators: Solvable Schrödinger-Type Operators (Cambridge University Press, Cambridge, 2000).
- S. Albeverio et al., Solvable Models in Quantum Mechanics (With an Appendix Written by Pavel Exner), 2nd revised ed. (AMS Chelsea Publishing, Providence, RI, 2005).

Some historical remarks on the δ' -problem

In Phys. Scripta (1994), for 1D Schrödinger equation

$$-\psi''(x)+V(x)\psi(x)=E\psi(x),\ E>0,$$

Patil computed transmission probability for

$$V(\mathbf{x}) = \gamma \delta'(\mathbf{x}), \quad \gamma \in \mathbb{R},$$

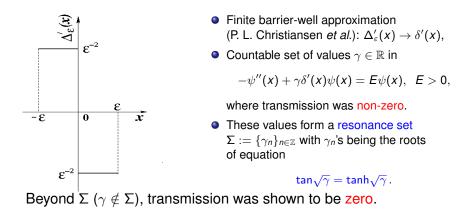
and found that the probability was identically zero.

Regularization of $\delta'(x)$ distribution has been done through Dirac's delta function $\delta(x)$:

$$rac{\delta({m x}+arepsilon)-\delta({m x}-arepsilon)}{2arepsilon}
ightarrow \delta'({m x}).$$

Patil S H 1994 Phys. Scripta 49 645.

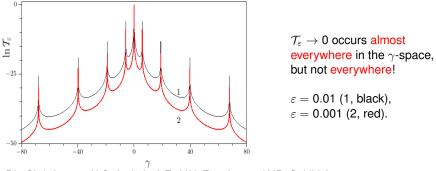
Resonant tunneling through a $\gamma \delta'(x)$ potential



Christiansen P L, Arnbak N C, Zolotaryuk A V, Ermakov V N and Gaididei Y B 2003 J. Phys. A: Math. Gen. **36** 7589.

Spire-like scenario of appearance of resonant tunneling

Convergence of transmission probability $\mathcal{T}_{\varepsilon}$ as $\varepsilon \to 0$ (numerical result):



 P.L. Christiansen, N.C. Arnbak, A.Z., V.N. Ermakov and Y.B. Gaididei 2003 J. Phys. A: Math. Gen. 36 7589.
 A.Z. & Y.Z. 2015 J. Phys. A: Math. Theor. 48 035302.

Šeba's theorem

In *Rep. Math. Phys.*, Šeba proved the theorem saying that for any regular function $\mathcal{V}(\xi)$ such that

$$\Delta'_{arepsilon}(x)=arepsilon^{-2}\mathcal{V}(x/arepsilon)
ightarrow \delta'(x) \ \ ext{as} \ \ arepsilon
ightarrow 0,$$

the following norm resolvent convergence:

N.R.
$$\lim_{\varepsilon \to 0} \left[H_0 + \gamma \Delta'_{\varepsilon}(x) \right] = H_0^- \oplus H_0^+$$

took place with boundary conditions $\psi(\pm 0) = 0$. This means zero transmission for all $\gamma \in \mathbb{R}$.

Šeba P 1986 Rep. Math. Phys. 24 111.

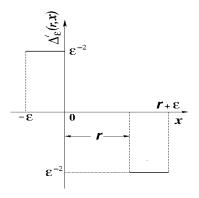
Clear discrepancy with our results!

Resolved in: Golovaty Y D and Hryniv R O 2010 J. Phys. A: Math. Theor. 43 155204.

However, Patil's result where, using the approximation

$$rac{\delta({m x}+arepsilon)-\delta({m x}-arepsilon)}{2arepsilon}
ightarrow \delta'({m x}),$$

he obtained zero transmission for all $\gamma \in \mathbb{R}$, appeared to be correct!



This mismatch can be explained using separated barrier and well.

Compare both the repeated limits of transmission $T_{\varepsilon}(r)$:

 $\lim_{\varepsilon\to 0}\lim_{r\to 0}\mathcal{T}_{\varepsilon}(r)\neq \lim_{r\to 0}\lim_{\varepsilon\to 0}\mathcal{T}_{\varepsilon}(r).$

$$\begin{split} \lim_{\varepsilon \to 0} \lim_{r \to 0} \mathcal{T}_{\varepsilon}(r) \to 0 \quad \text{almost} \\ \text{everywhere, while} \\ \lim_{r \to 0} \lim_{\varepsilon \to 0} \mathcal{T}_{\varepsilon}(r) \to 0 \text{ everywhere.} \end{split}$$

Two-scale regularization of $\delta(x)$ potential

Consider an antisymmetric regularization in the form of separated barrier and well:

$$\Delta'_{l'}(x) = \frac{1}{l(l+r)} \begin{cases} 1 & \text{for } -r/2 - l < x < -r/2, \\ -1 & \text{for } r/2 < x < r/2 + l, \\ 0, & \text{otherwise}, \end{cases} \rightarrow \delta'(x).$$

Transmission matrix

Transmission matrix connecting $\psi(x)$ and $\psi'(x)$ at $x = \pm (l + r/2)$:

$$\begin{pmatrix} \psi(l+r/2) \\ \psi'(l+r/2) \end{pmatrix} = \Lambda_{lr} \begin{pmatrix} \psi(-l-r/2) \\ \psi'(-l-r/2) \end{pmatrix}, \ \Lambda_{lr} = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}.$$

The Λ_{lr} -matrix can be computed as the product

$$\Lambda_{lr} = \Lambda^+ \Lambda_0 \Lambda^-,$$

$$\Lambda^{\pm} = \begin{pmatrix} \cos(q^{\pm}l) & (1/q^{\pm}) \sin(q^{\pm}l) \\ -q^{\pm} \sin(q^{\pm}l) & \cos(q^{\pm}l) \end{pmatrix}, \ \Lambda_0 = \begin{pmatrix} \cos(kr) & k^{-1} \sin(kr) \\ -k \sin(kr) & \cos(kr) \end{pmatrix}$$

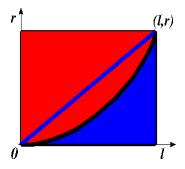
$$q^{\pm} := \sqrt{E \pm \frac{\gamma}{l(l+r)}}, \quad \gamma \in \mathbb{R}.$$

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の Q (や)
13/26

Transmission matrix in the squeezing limit

Specify the squeezing limit on pencil $r = cl^{\tau}$, c > 0, $\tau > 0$. Asymptotically ($\gamma > 0$), $q^+l \sim \sigma$, $q^-l \sim i\sigma$, $\sigma := \sqrt{\frac{\gamma}{1+cl^{\tau-1}}}$. In the $l \to 0$ limit, $\lambda_{12} \to 0$, λ_{11} and λ_{22} are finite constants,

$$\frac{\lambda_{21}}{\cos\sigma\cosh\sigma} \sim \frac{\sigma}{l} (\tanh\sigma - \tan\sigma) - \frac{\sigma^2 r}{l^2} \tan\sigma \tanh\sigma.$$



- In red region (0 < τ < 1, 1 < τ < 2), $|\lambda_{21}| \rightarrow \infty \Rightarrow \psi(\pm 0) = 0.$
- In blue region ($\tau = 1, 2 < \tau < \infty$), $\lambda_{21} \rightarrow 0$.
- On boundary black line ($\tau = 2$), $\lambda_{21} \rightarrow -c\gamma \sin\sqrt{\gamma} \sinh\sqrt{\gamma} =: \alpha$.

Resonance sets for $\gamma \delta'(x)$ potential

Two types of cancellation of divergences occur in λ_{21} as $l \to 0$. r (l,r) $\frac{\lambda_{21}}{\cos \sigma \cosh \sigma} \simeq \frac{\sigma}{l} (\tanh \sigma - \tan \sigma)$ $-\frac{\sigma^2 r}{l^2} \tan \sigma \tanh \sigma$.

• On blue line $\tau = 1$, resonance equation:

$$\tan\sqrt{\frac{\gamma}{1+c}} = \tanh\sqrt{\frac{\gamma}{1+c}} \left[1+c\sqrt{\frac{\gamma}{1+c}} \tanh\sqrt{\frac{\gamma}{1+c}}\right]^{-1}, \ \gamma \in \mathbb{R}.$$

• On black line and in blue region ($2 \le \tau < \infty$), resonance equation:

$$an \sqrt{\gamma} = anh \sqrt{\gamma}$$
 .

• Resonance sets: $\Sigma := \{\gamma_n\}_{n=-\infty}^{\infty}$.

Bound states for $\gamma \delta'(x)$ potential

Setting

$$\psi(\mathbf{x}) = \begin{cases} C_1 e^{\kappa \mathbf{x}} & \text{for } -\infty < \mathbf{x} < \mathbf{x}_1 ,\\ C_2 e^{-\kappa \mathbf{x}} & \text{for } \mathbf{x}_2 < \mathbf{x} < \infty, \end{cases}$$

one can prove a general equation for bound states:

$$\lambda_{12}\kappa^2 + (\lambda_{11} + \lambda_{22})\kappa + \lambda_{21} = \mathbf{0},$$

where λ_{ij} -elements in general depend on κ . Since $\lambda_{12} \rightarrow 0$ and on the pencil $r = c l^2$, $\lambda_{21} \neq 0$,

$$\kappa = -\frac{\lambda_{21}}{\lambda_{11} + \lambda_{22}} = -\frac{\alpha}{\theta + \theta^{-1}} = \frac{c}{2}\gamma \tanh^2 \sqrt{\gamma} = \frac{c}{2}|\gamma| \tanh^2 \sqrt{|\gamma|} \,,$$

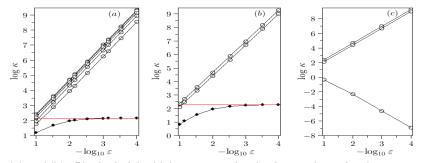
where θ is the limit:

$$\lambda_{11} = \lambda_{22}^{-1} \to \theta = \frac{\cosh\sqrt{\gamma}}{\cos\sqrt{\gamma}}, \quad \gamma = \gamma_n, n \in \mathbb{Z}.$$

<ロト<部ト<重ト<重ト 16/26

Scenario of appearance of a single bound state

Convergence of bound state levels κ_i 's as $\varepsilon \to 0$:



(a) and (b): 'Pinning' of the highest energy level, whereas lower levels escape to $-\infty$; Red lines are analytical solutions. (c): The highest level tends to zero ($r = c l^3$), while the lower one to $-\infty$.

A.Z. & Y.Z. J. Phys. A: Math. Theor. 54 (2021) 035201 (29pp).

Conclusions:

- Different pathways $\Delta'_{\varepsilon}(x) \rightarrow \delta'(x)$ lead to different PIs with boundary conditions:
 - separated, Dirichlet type: $\psi(-0) = \psi(+0) = 0$ (full reflection);
 - non-separated without bound states: $\psi(+0) = \theta_n \psi(-0), \quad \psi'(+0) = \theta_n^{-1} \psi'(-0),$ $\theta_n = \frac{\cosh \sqrt{\gamma_n}}{\cos \sqrt{\gamma_n}}, \quad \gamma_n \in \Sigma \text{ (resonant tunneling)};$
 - non-separated with bound states: $\psi(+0) = \theta_n \psi(-0), \quad \psi'(+0) = \alpha_n \psi(-0) + \theta_n^{-1} \psi'(-0),$ $\alpha_n = -c \gamma_n \sin \sqrt{\gamma_n} \sinh \sqrt{\gamma_n}$ (resonant tunneling).
- Equation -ψ"(x) + γδ'(x)ψ(x) = Eψ(x) contains a hidden parameter.

Point approximation of a well-shaped potential

$$-\psi''(x) + V(x)V(x) = E\psi(x), \quad E > 0,$$
$$V(x) \equiv \begin{cases} V, & 0 < x < I, \\ 0, & \text{otherwise.} \end{cases}$$

V > 0 (barrier), V < 0 (well). Transmission probability:

.

$$\mathcal{T} = \left[1 + \frac{V^2}{4E(E-V)}\sin^2\left(\sqrt{E-V}I\right)\right]^{-1},$$

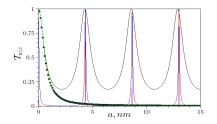
Point approximation: $V = \varepsilon^{-\nu} v$, $\nu > 0$. Only $\nu = 1$ and $\nu = 2$ are appropriate as $\varepsilon \to 0$.

$$\mathcal{T}_{\varepsilon \to 0}(\nu = 1) \to \frac{1}{1 + (\alpha/2k)^2}, \quad \alpha = \nu l(\text{strength of}\delta(x)), \alpha \in \mathbb{R}$$
$$\mathcal{T} = \mathcal{T}_w = \lim_{\varepsilon \to 0} \mathcal{T}_{w,\varepsilon} = \begin{cases} 1 & \text{if } \sqrt{d} \ a = n\pi, \\ 0 & \text{if } \sqrt{d} \ a \neq n\pi, \end{cases} \quad n = 1, 2, \dots$$

$$\Sigma := \{ d, a \mid \sqrt{d} \ a = n\pi, \ n = 1, 2, \ldots \}.$$

19/26

The point approximation of a well-shaped potential



 ε = 1 (black), unsqueezed (realistic);

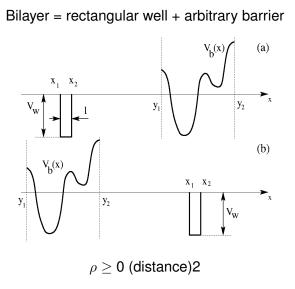
• $\nu = 1, \varepsilon = 0.01$ (green), δ -approximation.

Conclusion: Both limits: $\lim_{\varepsilon \to 0} \mathcal{T}_{w,\varepsilon}(\nu = 1) = [1 + (\alpha/2k)^2]^{-1}$, $\lim_{\varepsilon \to 0} \mathcal{T}_{w,\varepsilon}(\nu = 2) = \begin{cases} 1 & \text{if } \sqrt{d} \ a = n\pi, \\ 0 & \text{if } \sqrt{d} \ a \neq n\pi, \end{cases}$ n = 1, 2, ...,

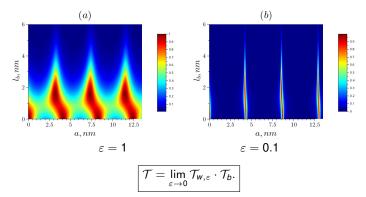
are possible for a well. However, limit with $\nu = 2$ is more physically realistic. Resonance set is $\Sigma := \{d, a \mid \sqrt{d} a = n\pi, n = 1, 2, ...\}$. Potential $\varepsilon^{-2}V(x/\varepsilon)$ has no limit as $\varepsilon \to 0$, not even in the sense of (Schwartz) distributions.

Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].

Influence of a squeezed prewell on tunneling



Influence of a squeezed prewell on tunneling



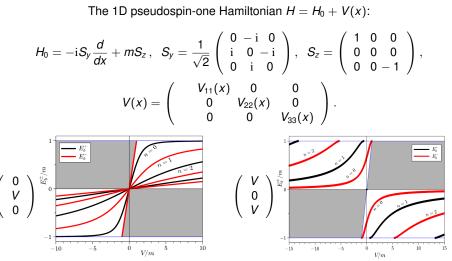
Conclusions:

- Controlling of tunneling with tuning parameters of a well.
- "Quantization of Tunneling".

•
$$V(x) = V_{-}(x) + V_{+}(x) \rightarrow \varepsilon^{-2} V_{-}(x/\varepsilon) + \varepsilon^{-1} V_{+}(x/\varepsilon).$$

Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].

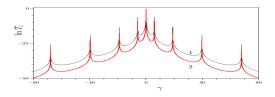
Dirac-like pseudospin-one structures



A.Z., Y.Z., V.P. Gusynin, Bound states and point interactions of the one-dimensional pseudospin-one Hamiltonian, *J. Phys. A: Math. Theor.* **56** (2023) 485303 (33pp).

More conclusions

- Resonant tunneling through one-point (singular) potentials is a new phenomenon in the domain of point interactions.
- Enhancement of resonance properties with shrinking a nanosystem. This might be used for fabricating electronic devices. Spire-like picture is remarkable.



More conclusions

 Different regularizations of δ'(x) distribution produce different transmission properties of equation

$$-\psi''(\mathbf{x}) + \gamma \delta'(\mathbf{x})\psi(\mathbf{x}) = \mathbf{E}\psi(\mathbf{x}).$$

Therefore this equation does not make any physical sense if considered alone (warning for physicists!), contrary to equation

$$\psi''(\mathbf{x}) + \alpha \delta(\mathbf{x})\psi(\mathbf{x}) = \mathbf{E}\psi(\mathbf{x}).$$

The equation with $\delta'(x)$ distribution contains a hidden parameter. Family of regularization pathways can be considered as this parameter.

 Squeezed regular potentials themselves may or not may have a shrinking limit, even in the sense of distributions.

Vielen Dank für Ihre Aufmerksamkeit!

26/26