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Outline of talk

@ General remarks on point interactions in one dimension.

@ Discussion on 1D Schrddinger equation with ¢’(x)
potential.

@ Resonant tunneling through one-point (singular) potentials.
@ Existence of bound states in §’(x) potential.

@ Point approximation of well-shaped potential revisited.

@ Conclusions.

2/26



Point interactions in one dimension

Advantages of point interactions (PlIs):

@ Shrinking a system to isolated points (set of Lebesgue’s
measure zero) leads to exactly solvable models.

@ These models are referred to as ‘point’ (contact or
zero-range) interactions (Pls).

@ Resolvents and spectra of Schrédinger operators,
scattering coefficients and other characteristics can
analytically be computed.
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Connection matrix

1D Schrédinger equation:
=" (x) + V(x)¥(x) = Ep(x).

If a Plis located at x = 0, it is identified by the two-sided
boundary conditions: (+0) and ¢’(+£0).

Example
V(x) = ad(x) potential, §(x) is Dirac’s delta function:
(+0) = ¥(-0) =: ¥(0), ¥'(+0) —¢'(—0) = azy(0).

These boundary conditions can be written through a
connection A-matrix:

<3'(<++Oo)>>:“<if(<_—oo))>’ A:Cv?)'
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Point interactions in one dimension

@ All non-trivial Pls (at x = +0) can be described by coupling
(four-parametric) conditions (non-separated):

Y(+0) 1\ _ ¥(-0) i [ M1 A2
(W(JFO))_A(@//(—O))’ A_eX(Am >\22>’
x €[0,m), Aj € R, AM1A22 — Aq2)21 = 1.

@ Trivial Pls (acting as a fully reflecting wall) are called
separated.

@ Example: A2 =0, A1 and Az are finite but |Ao¢] = oco.
@ Boundary conditions are ¢(+0) = 0.

Albeverio S, Dabrowski L and Kurasov P 1998 Lett. Math. Phys. 45 33.
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Some historical remarks on the §'-problem

In Phys. Scripta (1994), for 1D Schrédinger equation
=" (x) + V(x)¥(x) = E¥(x), E >0,
Patil computed transmission probability for
V(x) =70'(x), ~v€ER,
and found that the probability was identically zero.

Regularization of ¢’(x) distribution has been done through
Dirac’s delta function 6(x):

0(x+e)—0(x—¢) s
2¢

Patil S H 1994 Phys. Scripta 49 645.

(x).
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Resonant tunneling through a ~4'(x) potential

@ Finite barrier-well approximation
(P. L. Christiansen et al.): AZ(x) — §'(x),

@ Countable set of values v € R in
=" (X) + 78" ()¢ (x) = Ep(x), E >0,

e where transmission was non-zero.

Ag(x)

@ These values form a resonance set
Y := {vn}nez With vy's being the roots
of equation

e’ tany/y = tanh /7.
Beyond X (v ¢ ¥), transmission was shown to be zero.

Christiansen P L, Arnbak N C, Zolotaryuk A V, Ermakov V N and Gaididei Y B
2003 J. Phys. A: Math. Gen. 36 7589.
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Spire-like scenario of appearance of resonant

tunneling

Convergence of transmission probability 7. as € — 0 (numerical result):

T — 0 occurs almost
everywhere in the v-space,
but not everywhere!

e =0.01 (1, black),
e =0.001 (2, red).
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P.L. Christiansen, N.C. Arnbak, A.Z., V.N. Ermakov and Y.B. Gaididei
20083 J. Phys. A: Math. Gen. 36 7589.

A.Z. & Y.Z. 2015 J. Phys. A: Math. Theor. 48 035302.
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Seba’s theorem

In Rep. Math. Phys. , Seba proved the theorem saying that for
any regular function V(&) such that

AL(x) =e2V(x/e) — &'(x) as € = 0,
the following norm resolvent convergence:
N.R. lim [Hy +yAL(X)] = Hy & Hy
e—0
took place with boundary conditions (4+0) = 0. This means
zero transmission for all v € R.

Seba P 1986 Rep. Math. Phys. 24 111.
Clear discrepancy with our results!

Resolved in: Golovaty Y D and Hryniv R O 2010 J. Phys. A: Math. Theor. 43
155204.
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However, Patil’s result where, using the approximation

o(x + 5)2—66(X —e) S §(%),

he obtained zero transmission for all v € R, appeared to be correct!

This mismatch can be explained using
separated barrier and well.

Aglrx)

£ Compare both the repeated limits of

transmission 7:(r):

lim lim 72(r) # lim lim 72(r).

F+€ e—=0r—0 r—0e—0

, lime_olim,0 7:(r) — 0 almost
€ everywhere, while

lim, o lim._0 7 (r) — 0 everywhere.
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Two-scale regularization of §(x) potential

Consider an antisymmetric regularization in the form of separated barrier and
well:

1 1 for —r/2—-1<x<—r/2,
Al (x) = -1 forr/2<x<r/2+]1, — &' (x).
I(1+r) 0, otherwise,
i ;
:ir J < (L’j
Kl+r)
b~ [ —
 J ¥
0 X
r
— [ — < .
-1 : 0 r
Ifl+r)
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Transmission matrix

Transmission matrix connecting ¢(x) and ’(x) at
x==x(+r/2):

w(/—i-l'/Z) —A 1/)(—/—['/2) A, — A1 A2
Y'(I+r/2) "\ (=1=rj2) ) " Aot A2 )
The A,-matrix can be computed as the product
Ny = /\+/\0/\_,

B (gt) (1/9%)sin(g™)) ~( cos(kr) k~'sin(kr)
A = ( (j);i sin(gt/)  cos(g*/) > » o= < —ksin(kr)  cos(kr) >

i+n: &R
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Transmission matrix in the squeezing limit

Specify the squeezing limit on pencil r = ¢/, ¢ > 0, 7 > 0.

Asymptotically (y >0), q*/~o, g l~io, o:=, /o=
In the I — 0 limit, A2 — 0, A1 and Ao are finite constants,

A o olr
— 22 Z (tanho —tano) — —5tano tanho.
cos o cosh o / /

! (br) -
@ Inredregion (0 <7< 1,1 <7 <2),
|)\21’ — 00 = ¢(:|:0) =0.
@ In blue region (1=1,2 < 7 < 0),
)\21 — 0.
@ On boundary black line (7 = 2),
A21 — — €7 sin /7 sinh/y =: a.
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Resonance sets for vd'(x)potential

Two types of cancellation of divergences occur in Aoq as / — 0.
T (Lr)

A21

g
———— ~ —(tanho — tano)
cosacosha /
alr
———tano tanho.

/2

0 !

@ On blue line 7 = 1, resonance equation:

—1
v Y o
an1/1+cftanh C[1+C\/1+Ctanh\/1+c} , 7YER

@ On black line and in blue region (2 < 7 < o), resonance equation:

tany/y = tanh,/7.

@ Resonance sets: X := {n}n2_ -
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Bound states for v4’(x) potential

Setting
Cie™*  for —co < x < Xy,
Coe "X for x» < X < o0,

w00 = {
one can prove a general equation for bound states:
A2k? + (M1 + Ao2)k + A1 = 0,

where \j-elements in general depend on «.
Since A1 — 0 and on the pencil r = ¢ 2, o1 # 0,

.«
M1+ 0461

(o (o
= éytanhzﬁ = EM tanhzm\ ,

where 4 is the limit:

cosh /vy

Mt =Xy = 0= cos /7’ Y =n,N € Z.
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Scenario of appearance of a single bound state

Convergence of bound state levels «,’'s as ¢ — 0:

(b) (e)
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(a) and (b): ‘Pinning’ of the highest energy level, whereas lower levels escape

to —oo; Red lines are analytical solutions.

(c): The highest level tends to zero (r = ¢ I°), while the lower one to —oo.

|
*

AZ. & Y.Z. J. Phys. A: Math. Theor. 54 (2021) 035201 (29pp).
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Conclusions:

@ Different pathways AL(x) — ¢'(x) lead to different Pls with
boundary conditions:

e separated, Dirichlet type: 4(—0) = ¢(+0) = 0
(full reflection);

e non-separated without bound states:
$(+0) = 051(=0), ¥'(+0) = 0;"¢'(-0),

bn = S42, yp € T (resonant tunneling);

e non-separated with bound states:
¥(+0) = 050 (=0), ¥'(+0) = anth(—0) + ;"¢ (-0),
ap = — Cp siny/vp sinh /A, (resonant tunneling).

@ Equation —¢"(x) + ~vd'(x)¢(x) = Ew(x) contains a hidden
parameter.
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Point approximation of a well-shaped potential

—¢"(x) + V(x)V(x) = Ey(x), E>0,

. V, 0<x<|,
Vi) = { 0, otherwise.

V > 0 (barrier), V < 0 (well). Transmission probability:
Y —
T:{1+msm( E*VI):| s
Point approximation: V =¢7"v, v > 0. Only v = 1 and v = 2 are appropriate

ase — 0.

]
1+ (a/2k)2’

1 if Vda=nr,
0 if vVda# nm,

y:={d,a|Vda=nr, n=1,2,.. }.

Teso(v =1) — a = vi(strength of§(x)), a € R.

T:n:limoTw,sz{ —1,2,....
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The point approximation of a well-shaped potential

@ = =1 (black),
unsqueezed (realistic);

@ v=2,¢e=0.1(blue);
v=2,¢=0.01(red);

\ @ v=1,¢=0.01 (green),

d-approximation.

0 5 a,nm 10 15

Conclusion: Both limits: lim. o 7w,-(v = 1) = [1 + (a/2k)?] ",
, 1 if Vda=nr
lime (v=2)= . ’
im0 T.e(v = 2) { 0 if Vda# nn,
are possible for a well. However, limit with » = 2 is more physically realistic.
Resonance setis ¥ := {d,a|vda=nr, n=1,2,...}. Potential ¢ 2V(x/¢)
has no limit as ¢ — 0, not even in the sense of (Schwartz) distributions.

n=1,2,...,

Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].
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Influence of a squeezed prewell on tunneling

Bilayer = rectangular well + arbitrary barrier

/@
Xl X2 \

=X
VW 1 vi \/ Y2
> e

V)
\ X, X2

p > 0 (distance)2
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Influence of a squeezed prewell on tunneling

(a) (b)
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T = |T;10 TW,E ° 717

Conclusions:

@ Controlling of tunneling with tuning parameters of a well.
@ “Quantization of Tunneling”.

@ V(x)=V_(x)+ Vi(x) = e 2V_(x/e) + e "V (x/e).
Y.Z & A.Z. Annals of Physics (to appear), arXiv:2407.01156 [quant-ph].
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Dirac-like pseudospin-one structures

The 1D pseudospin-one Hamiltonian H = Hy + V/(x):
d 1 0—-i 0 100
Ho=—iSy—+mS,, S§y=—| i 0—-i |, S:=( 00 0 |,
ax v2a\lo i o 0 0-1

V11(X) 0 0
V(X) = ( 0 V22(X) 0 ) .
0 0 b%g(X)

T T -
10 5 0 N 5 10 15 10 5 0 5 10 15
V/m Vim

A.Z.,Y.Z., V.P. Gusynin, Bound states and point interactions of the one-dimensional
pseudospin-one Hamiltonian, J. Phys. A: Math. Theor. 56 (2023) 485303 (33pp).
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More conclusions

@ Resonant tunneling through one-point (singular) potentials
is a new phenomenon in the domain of point interactions.

@ Enhancement of resonance properties with shrinking a
nanosystem. This might be used for fabricating electronic
devices. Spire-like picture is remarkable.
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More conclusions

@ Different regularizations of ¢’(x) distribution produce
different transmission properties of equation

—9"(x) + 78" (x)eb(x) = Ev(x).

Therefore this equation does not make any physical sense
if considered alone (warning for physicists!), contrary to
equation

¥"(x) + ad(X)¥(x) = Ep(x).
The equation with ¢’(x) distribution contains a hidden
parameter. Family of regularization pathways can be
considered as this parameter.
@ Squeezed regular potentials themselves may or not may
have a shrinking limit, even in the sense of distributions.
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