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Plan of the talk

1. Algebraic structures in the theory of classical integrable
systems: two types of structures

2. Algebraic structures in the theory of quantum integrable
systems: two types of structures

3. Physical applications: integrable models with
nearest-neighbours interactions

4. Physical applications: integrable spin models with
long-range spin-spin interactions

5. Physical applications: integrable fermion models of
nuclear physics

6. Physical applications: integrable spin-boson models of
quantum optics



I. Algebraic structures in the classical theory
I.A. Hamiltonian systems and Lax representation
Assume that Hamiltonian equations on a Poisson manyfold
(P , { , }) with a Hamiltonian H are written in the Lax form:

dL(u)

dt
= [L(u),MH(u)], (1)

where L(u) and MH(u) are some matrices depending on the
initial dynamical variables — local coordinates on the space P
— and the auxiliary complex parameter u. The Lax matrix
L(u) takes values in a finite-dimensional Lie algebra g.
The Lax representation (1) provides generating functions of
the first integrals of the corresponding Hamiltonian equations,
which may be chosen to be the traces of its powers

Ik(u) = tr L(u)k , k ∈ 1, n. (2)



I.B. Classical r-matrices and linear tensor structure
In order to guarantee the Poisson-commutativity of the above
generating functions needed for the Liouville integrability of
the corresponding hamiltonian system we will assume that the
initial Poisson brackets are re-written on the level of the Lax
matrices in the form of the so-called linear tensor brackets:

{L1(u), L2(v)}1 = [r12(u, v), L1(u)]− [r21(v , u), L2(v)], (3)

where L1(u) = L(u)⊗ 1, L2(v) = 1⊗ L(v) and the function of
two complex variables

r(u, v) =

dimg∑
a,b=1

rab(u, v)Xa ⊗ Xb (4)

with values in g⊗ g is called classical r -matrix.
The Poisson bracket (3) guarantee the commutativity of (2):

{Ik(u), Il(v)}1 = 0. (5)



The generalized classical Yang-Baxter equation:

[r12(u, v), r13(u,w)]− [r23(v ,w), r12(u, v)]+

+ [r32(w , v), r13(u,w)] = 0 (6)

provides the Jacobi condition for the brackets (3).
We will consider r -matrices possessing the decomposition:

r(u, v) =
Ω

u − v
+ r0(u, v), (7)

where Ω =
dimg∑
α,β=1

Xα ⊗ Xβ and r0(u, v) is a regular on the

diagonal u = v function with values in g⊗ g.
Example. The simplest possible r -matrix has the form:

r(u, v) =
Ω

u − v
. (8)



I.C. Classical r-matrices and quadratic tensor structures
In the case of skew-symmetric r -matrices, i.e. when

r12(u1, u2) = −r21(u2, u1),

the generalized classical Yang-Baxter equation reduces to the
usual classical Yang-Baxter equation [Sklyanin 1979]:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2) + r13(u1, u3)],
(9)

solutions of which have been classified [Belavin, Drinfeld 1982].
In this case are defined also quadratic brackets [Sklyanin 1979]:

{L1(u), L2(v)}2 = [r12(u, v), L1(u)L2(v)], (10)

which also guaranty the Poisson-commutativity of (2):

{Ik(u), Il(v)}2 = 0. (11)



Let r(u − v) be a skew-symmetric classical r -matrix. Let σ be
an automorphism of g of second order, such that

(σ ⊗ σ) · r12(u − v) = r12(u − v).

In this case one can define the following quadratic brackets
(Sklyanin 1988):

{L1(u1), L2(u2)}2 = [r12(u1 − u2), L1(u1)L2(u2)]+

+ L1(u1)s12(u1 + u2)L2(u2)− L2(u2)s12(u1 + u2)L(u1), (12)

where
s12(u1 + u2) ≡ 1⊗ σ · r12(u1 + u2).

It also guaranties the Poisson-commutativity of (2):

{Ik(u), Il(v)}2 = 0 (13)

and possess one more generalization.



Let us consider four tensor a, b, c , d satisfying equations:

[a12(u1, u2), a13(u1, u3)] = [a23(u2, u3), a12(u1, u2)+a13(u1, u3)],

[d12(u1, u2), d13(u1, u3)] = [d23(u2, u3), d12(u1, u2)+d13(u1, u3)],

[a12(u1, u2), c13(u1, u3)] = [c23(u2, u3), a12(u1, u2)+ c13(u1, u3)],

[d12(u1, u2), b13(u1, u3)] = [b23(u2, u3), d12(u1, u2)+b13(u1, u3)].

where tensors a, d are skew-symmetric,

c12(u1, u2) = b21(u2, u1).

Then it is possible to define the Poisson brackets (Maillet):

{L1(u1), L2(u2)} = a12(u1, u2)L1(u1)L2(u2)+L1(u1)b12(u1, u2)

×L2(u2)−L2(u2)c12(u1, u2)L1(u1)−L1(u1)L2(u2)d12(u1, u2),
(14)

This is the most general form of quadratic brackets satisfying
(13) under condition:

a12(u1, u2) + b12(u1, u2) = c12(u1, u2) + d12(u1, u2). (15)



II. Algebraic structures in quantum theory
II.A. Classical r-matrices and linear quantum structures
In quantum case the Lax matrix L(u) is replaced by the

quantum Lax matrix: L(u) → L̂(u) which reflects the fact that
the basic dynamical variables — coordinates on P — are now
quantum operators.
The quantisation of the linear brackets (3) is achieved by
substitution of the Poisson brackets by commutator:

[L̂1(u), L̂2(v)] = iℏ
(
[r12(u, v), L̂1(u)]− [r21(v , u), L̂2(v)]

)
.
(16)

Finding commutative quantum analogs of all tr L(u)k , k ∈ 1, n
is an open problem. Nevertheless it is possible to show that for
small grades we indeed have the needed commutativity:

[tr(L̂(u)k), tr(L̂(v)l)] = 0, k , l ∈ 1, 2. (17)



II.B. Quantum R-matrices and quadratic algebras
In the case of the quadratic algebras the quantisation problem
is more complicated. After replacement of the Lax matrix L(u)

by the quantum Lax matrix L(u) → L̂(u) the quantum analog
of the Poisson relations (10) are the following (Faddeev et all):

R12(u, v)L̂1(u)L̂2(v) = L̂2(v)L̂1(u)R12(u, v), (18)

where the quantum R-matrix R12(u, v) satisfies quantum
Yang-Baxter equation:

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2)
(19)

and possess the following quasi-classical expansion:

R12(u1, u2) = 1⊗ 1 + iℏr12(u1, u2) + o(ℏ2), (20)

The algebra (18) provides commutativity of the quantum
analogs of tr L(u)k , k ∈ 1, n.



After replacement of the Lax matrix L(u) by the quantum Lax

matrix L(u) → L̂(u) the quantum analogs of the relations (12)
are the following ones (Sklyanin 1989):

R12(u, v)L̂1(u)S12(u, v)L̂2(v) = L̂2(v)S12(u, v)L̂1(u)R12(u, v),
(21)

where the quantum R-S matrices satisfy the equations:

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2),

R12(u1, u2)S13(u1, u3)S23(u2, u3) = S23(u2, u3)S13(u1, u3)R12(u1, u2),

and possess the following quasi-classical expansions:

R12(u1, u2) = 1⊗ 1 + iℏr 12(u1, u2) + o(ℏ2), (22)

S12(u1, u2) = 1⊗ 1 + iℏs12(u1, u2) + o(ℏ2), (23)

The algebra (21) also provides commutativity of the quantum
analogs of tr L(u)k , k ∈ 1, n.



After replacement of the Lax matrix L(u) by the quantum Lax

matrix L(u) → L̂(u) the quantum analogs of the relations (14)
are the following ones (Maillet 1991):

A12(u, v)L̂1(u)B12(u, v)L̂2(v) = L̂2(v)C12(u, v)L̂1(u)D12(u, v),
(24)

where the quantum A,B , C , D matrices satisfy the equations:

A12(u1, u2)A13(u1, u3)A23(u2, u3) = A23(u2, u3)A13(u1, u3)A12(u1, u2),

A12(u1, u2)C13(u1, u3)C23(u2, u3) = C23(u2, u3)C13(u1, u3)A12(u1, u2),

D12(u1, u2)D13(u1, u3)D23(u2, u3) = D23(u2, u3)D13(u1, u3)D12(u1, u2),

D12(u1, u2)B13(u1, u3)B23(u2, u3) = B23(u2, u3)B13(u1, u3)D12(u1, u2),



possess the following quasi-classical expansions:

A12(u1, u2) = 1⊗ 1 + iℏa12(u1, u2) + o(ℏ2),

B12(u1, u2) = 1⊗ 1 + iℏb12(u1, u2) + o(ℏ2),

C12(u1, u2) = 1⊗ 1 + iℏc12(u1, u2) + o(ℏ2),

D12(u1, u2) = 1⊗ 1 + iℏd12(u1, u2) + o(ℏ2).

and the following properties:

B12(u1, u2) = C21(u2, u1).

It is also assumed that the unit matrix satisfies (24), i.e.
ABCD-matrices are connected among themselves as follows:

A12(u1, u2)B12(u1, u2) = C12(u1, u2)D12(u1, u2).

The algebra (24) also provides commutativity of the quantum
analogs of tr L(u)k , k ∈ 1, n.



Quadratic structures and Heisenberg models
The famous Heisenberg Hamiltonian is the Hamiltonian with
the nearest neighbours interaction:

Ĥ =
3∑

α=1

N∑
k=1

JαŜ
(k)
α Ŝ (k+1)

α , (25)

The Hamiltonian (25) is integrable if all quantum spin

operators Ŝ
(l)
α , α ∈ 1, 3, l ∈ 1,N act in a representation of

so(3)⊕N with all spins being equal to one-half.
The integrability of the Hamiltonian (25) is based on the
theory of quantum algebras. In particular the Hamiltonian (25)
is connected with the algebra (18) and quantum elliptic
R-matrix of Baxter and Jα are expressed via the branching
points of the elliptic curve.
Other quadratic quantum structures e.g. (21) lead to the
additional boundary terms in the hamiltonian (25).



Linear structures and Gaudin-type models

Let Ŝ
(l)
a , a ∈ 1, dimg, l ∈ 1,N be quantum operators that

constitute a representation of the Lie algebra g⊕N , i.e.:

[Ŝ (l)
a , Ŝ

(k)
b ] = δkl

dimg∑
c=1

C c
abŜ

(k)
c .

Let νk , νk ̸= νl , k , l ∈ 1, ...,N be some fixed points in the
complex plane belonging to the open region U in which the
r -matrix r(u, v) possesses the decomposition (7).
Let c(u) be a “constant Lax matrix” solving the equation:

[r12(u, v), c1(u)]− [r21(v , u), c2(v)] = 0. (26)

Let us define the following Lax matrix:

L̂(u) =
N∑

k=1

dimg∑
a,b=1

r ab(νk , u)Ŝ
(k)
a Xb +

dimg∑
a=1

ca(u)Xa.



Then the operators Ĥl

Ĥl =
1

2
resu=νl tr(L̂(u)

2).

of the following explicit form:

Ĥl =

dimg∑
a,b=1

N∑
k=1,k ̸=l

r ab(νk , νl)Ŝ
(k)
a Ŝ

(l)
b +

+

dimg∑
a,b=1

r ab0 (νl , νl)

2
(Ŝ (l)

a Ŝ
(l)
b + Ŝ

(l)
b Ŝ (l)

a ) +

dimg∑
a=1

ca(νl)Ŝ
(l)
a . (27)

constitute an abelian (commutative) algebra (Skrypnyk 2006).
In the skew-symmetric case they coincide with the usual
Gaudin hamiltonians in an external field (Gaudin 1976):

Ĥl =

dimg∑
a,b=1

N∑
k=1,k ̸=l

r ab(νk , νl)Ŝ
(k)
a Ŝ

(l)
b +

dimg∑
a=1

ca(νl)Ŝ
(l)
a . (28)



Example 1: Standard rational Gaudin hamiltonians
The rational Gaudin hamiltonians in an external magnetic field
are obtained by a specification of the formula (28) for the case
of the rational r -matrix:

Ĥl =
N∑

k=1,k ̸=l

dimg∑
a,b=1

g abŜ
(k)
a Ŝ

(l)
b

(νl − νk)
+

dimg∑
a=1

kaŜ (l)
a , (29)

here ka are the components of an external field K ∈ g and g ab

are the components of the invariant bilinear form.
Let us assume that K belongs to the Cartan subalgebra h of g.
It has a reductive centralizer gK0 generated by the elements

M̂a =
N∑

k=1

Ŝ (k)
a , (30)

where Xa ∈ gK0 . The Casimir element ĈgK0
of gK0 commute

with all Ĥl . Besides ĈgK0
and Ĥl commute with any integral



belonging to the “global” Cartan subalgebra, in particular with

ĥδK =
N∑
l=1

rankg∑
i=1

δK (Hi)Ŝ
(l)
i , where δK ≡

∑
α∈(∆/∆K )+

α.

The linear combination of these hamiltonians:

Ĥ s
gBCS =

N∑
l=1

νl Ĥl +
1

2

N∑
l=1

Ĉl −
1

2
ĈgK0

− 1

2
ĥδK , (31)

in terms of the root basis it is written as follows:

Ĥ s
gBCS =

N∑
l=1

rankg∑
i=1

νlki Ŝ
(l)
i +

N∑
k,l=1

∑
α∈(∆/∆K )+

Ŝ
(l)
−αŜ

(k)
α . (32)

This is spin Hamiltonian that will be used for the construction
of the integrable fermion models of the s-type.



Example 2: Z2-graded r-matrices
Let σ be an automorphism of g of a second order. Let
g = g0 + g1 be the corresponding Z2-grading of g, such that

g0 = gK0 , g1 = gK1 + gK−1,

where subalgebra gK0 is reductive, subalgebras gK0 are abelian.
The corresponding Z2-graded r -matrix has the form:

r12(u, v) =
2v

u2 − v 2

(rankg∑
i=1

Hi⊗Hi+
∑

α∈(∆K )+

(Xα⊗X−α+X−α⊗Xα)
)

+
2u

u2 − v 2

∑
α∈(∆/∆K )+

(Xα ⊗ X−α + X−α ⊗ Xα), (33)

where ∆ is a system of roots of the algebra g and ∆K is a
subsystem of roots of the subalgebra gK0 .



Example 2: Z2-graded Gaudin hamiltonians
In the case of Z2-graded r -matrices the generalized Gaudin
hamiltonians in magnetic field (28) have the following form:

Ĥl =
N∑

k=1,k ̸=l

( 2νl
(ν2

k − ν2
l )
(

rankg∑
i=1

Ŝ
(k)
i Ŝ

(l)
i +

∑
α∈(∆K )+

(Ŝ (k)
α Ŝ

(l)
−α+Ŝ

(k)
−αŜ

(l)
α ))

+
2νk

(ν2
k − ν2

l )

∑
α∈(∆/∆K )+

(Ŝ (k)
α Ŝ

(l)
−α + Ŝ

(k)
−αŜ

(l)
α )

)
− 1

2νl

(rankg∑
i=1

Ŝ
(l)
i Ŝ

(l)
i +

∑
α∈(∆K )+

(Ŝ (l)
α Ŝ

(l)
−α + Ŝ

(l)
−αŜ

(l)
α )

)
+

+
1

2νl

∑
α∈(∆/∆K )+

(
Ŝ (l)
α Ŝ

(l)
−α + Ŝ

(l)
−αŜ

(l)
α

)
+

c

νl

rankg∑
i=1

ki Ŝ
(l)
i , (34)

where K =
rankg∑
i=1

kiHi is the element of the Cartan subalgebra

centralized by gK0 .



Let us consider the following combination of the integrals (34):

Ĥ
px+ipy
gBCS =

N∑
l=1

ν−1
l Ĥl +

1

2
ν−2
l

N∑
l=1

Ĉl , (35)

where Ĉl are quadratic Casimir operators of l -th copy of g:

Ĉl =

dimg∑
a,b=1

g abŜ (l)
a Ŝ

(l)
b .

More explicitly:

Ĥ
px+ipy
gBCS =

N∑
k=1

ν−2
l

rankg∑
i=1

(ki + δK (Hi))Ŝ
(l)
i +

+ 2
N∑

k,l=1

ν−1
k ν−1

l

∑
α∈(∆/∆K )+

Ŝ
(k)
−αŜ

(l)
α , (36)

where δK ≡
∑

α∈(∆/∆K )+

α. The hamiltonian (36) is our general

integrable px + ipy hamiltonian written in the spin form.



Integrable BCS-type hamiltonians
Using the fermionization procedure, i.e. expressing the spin
operators via fermion creation-anihilation operators we define
integrable pairing hamiltonian containing m types of fermions:

ĤgBCS =
m∑
i=1

(
N∑
l=1

∑
σ∈±

ϵl ,ic
†
l ,i ,σcl ,i ,σ−2

N∑
k,l=1

GT=1
ii ,kl c

†
l ,i ,+c

†
l ,i ,−ck,i ,−ck,i ,+)

−
m∑

i ,j=1,i<j

N∑
k,l=1

GT=1
ij ,kl (c

†
l ,j ,+c

†
l ,i ,−+c†l ,i ,+c

†
l ,j ,−)(ck,i ,−ck,j ,++ck,j ,−ck,i ,+)−

−
m∑

i ,j=1,i<j

N∑
k,l=1

GT=0
ij ,kl (c

†
l ,j ,+c

†
l ,i ,−−c†l ,i ,+c

†
l ,j ,−)(ck,i ,−ck,j ,+−ck,j ,−ck,i ,+),

where ck,i ,σ,c
†
l ,j ,σ, k , l ∈ 1,N , i , j ∈ 1, n are fermion operators:

{c†k,i ,σ, cl ,j ,σ′} = δklδijδσσ′ , {c†k,i ,σ, c
†
l ,j ,σ′} = 0, {ck,i ,σ, cl ,j ,σ′} = 0.

In m = 2 case they are N = Z proton-neutron Hamiltonians.



The integrability requirements for the free energies are:

ϵl ,i = ϵl ,j = ϵl , ∀i , j ∈ 1,m

The integrability requirements for s-type couplings are:

1)GT=0
ij ,kl = GT=1

ij ,kl =
1

2
g , 2)GT=0

ij ,kl = 0,GT=1
ij ,kl = g ,

3)GT=1
ij ,kl = 0,GT=0

ij ,kl = g .

The integrability requirements for px + ipy -type couplings are:

1)GT=0
ij ,kl = GT=1

ij ,kl =
1

2
g
√
ϵk
√
ϵl , 2)GT=0

ij ,kl = 0, GT=1
ij ,kl = g

√
ϵk
√
ϵl ,

3)GT=1
ij ,kl = 0, GT=0

ij ,kl = g
√
ϵk
√
ϵl .

The three cases above are connected with the generalized
Gaudin Hamiltonians based on Lie algebras gl(2m), sp(2m)
and so(2m), respectively.
All of the above integrable Hamiltonians are diagonalizable by
means of the nested Bethe anzats (T. Skrypnyk 2012).
Remark. The above s-type integrable fermion Hamiltonians in
the cases of gl(2) and sp(4) were found by Richardson in 1967.



The generalized Jaynes-Cummings-Dicke hamiltonians
For the classical r -matrices possessing special point ν0 , it is
possible to define spin-boson hamiltonians (T. Skrypnyk 2015):

ĤJCD
l = ĤG

l +

rankg∑
i=1

dimg∑
b=1

1

2
ki Ŝ

(l)
b ∂2

ν0
r ib(ν0, νl)+

+

dimg0ν0∑
a=1

dimg∑
b=1

l̂ (0)a (b̂−β , b̂
+
α )Ŝ

(l)
b r ab(ν0, νl)

+
∑

α∈(∆/∆K )+

dimg∑
b=1

(√
α(K )Ŝ

(l)
b (b̂+α ∂ν0r

αb(ν0, νl)+b̂−α ∂ν0r
−αb(ν0, νl)

)
,

where ĤG
l is Gaudin-type hamiltonian, b̂+α , b̂

−
α Bose operators:

[b̂+α , b̂
−
β ] = δα,β 1̂, [b̂

+
α , b̂

+
β ] = [b̂−α , b̂

−
β ] = 0, where α, β ∈ (∆/∆K )+.

(37)

and l̂
(0)
a is expressed via b̂−β , b̂

+
α with the help of the

generalized Jordan-Schwinger formulae (Skrypnyk 2015).



The hamiltonians ĤJCD
l mutually commute (Skrypnyk 2015):

[ĤJCD
k , ĤJCD

l ] = 0

and one can define the following quantum Hamiltonian:

ĤJCD =
N∑
l=1

ĤJCD
l =

N∑
l=1

rankg∑
i=1

dimg∑
b=1

1

2
ki Ŝ

(l)
b ∂2

ν0
r ib(ν0, νl)+

+
N∑
l=1

∑
α∈(∆/∆K )+

dimg∑
b=1

√
α(K )(b̂+α ∂ν0r

αb(ν0, νl)+b̂−α ∂ν0r
−αb(ν0, νl))Ŝ

(l)
b

+
N∑
l=1

dimg0ν0∑
a=1

dimg∑
b=1

l̂ (0)a (b̂−β , b̂
+
α )Ŝ

(l)
b r ab(ν0, νl) +

N∑
l=1

ĤG
l , (38)

which is an r -matrix generalization of JCD hamiltonian.
Remark. In the case of Cartan-invariant r -matrices one can
add to ĤJCD also any combination of linear integrals M̂b

Hi
.



The rational Jaynes-Cummings-Dicke hamiltonian
In the case of the rational r -matrix we obtain (T. Skrypnyk
2008):

ĤJCD
l = ĤG

l +
∑

α∈(∆/∆K )+

√
α(K )(b̂+α Ŝ

(l)
−α+b̂−α Ŝ

(l)
α )+

rankg∑
i=1

νlki Ŝ
(l)
i
.

Adding to it linear integrals M̂b
Hi

we will have:

ĤJCD =

rankg∑
i=1

wiM̂
b
Hi
+ g

N∑
l=1

Ĥl . (39)

More explicitly:

ĤJCD = −
rankg∑
i=1

wi

∑
α∈(∆/∆K )+

α(Hi)b̂
−
α b̂

+
α+

rankg∑
i=1

N∑
k=1

(wi+gνlki)Ŝ
(k)
i

+ g
∑

α∈(∆/∆K )+

√
α(−K )

N∑
l=1

(b̂+α Ŝ
(l)
−α + b̂−α Ŝ

(l)
α ). (40)



The generalized N = 1 Jaynes-Cummings hamiltonian.
The g = gl(n) case
In this case generalized n-level JC hamiltonian has the form:

Ĥ = −
n∑

i ,j=1,i<j

(wi − wj)b̂
−
ij b̂

+
ij +

n∑
i=1

(wi + gci)Ŝii

+ g
n∑

i ,j=1,i<j

√
kj − ki(b̂

+
ij Ŝji + b̂−ij Ŝij). (41)

The first term in this hamiltonian is an energy of n(n − 1)/2
modes of the electromagnetic field; the second term
correspond to a free energy of n-level atom; the last term is an
atom-field interaction corresponding to the passages from the
level j to the level i and vice verse with the simultaneous
creation/anihilation of photon.
The Hamiltonian (41) is diagonalizable by means of the nested
Bethe anzats (T. Skrypnyk 2008).
Remark. In the n = 2 case the Hamiltonian (41) yields the
famous two-level, one-mode Jaynes-Cummings hamiltonian.



Conclusion and Discussion
In the present talk we have reviewed the theory of algebraic
structures in the theory of classical and quantum integrable
systems and shown that

▶ Not only quadratic tensor structures are important for the
theory of quantum integrable systems. There are many
physically interesting quantum integrable models
associated with linear tensor structures and classical
(non-skew-symmetric in general) r -matrices

The main open problems in this context are the following:

▶ To classify all non-skew-symmetric classical r -matrices
and related classical and quantum integrable models

▶ To develop the method of solution (separation of
variables, Bethe ansatz — both “off-shell” and “on-shell”)
for the corresponding classical and quantum models
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