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Intro

The subject of our research is equations of state and phase diagrams of matter, phase
transitions, the role of topology and geometry of space in the evolution of systems, and the
effects of the mutual influence of matter and space-time.

In this talk we are focusing on 7 problems (5 with Prof. Gavrilik, and indexed by (year)) in
areas 2-4 from the list of our interests:
1. strong interacting matter (nuclear, quark-gluon and partonic systems)
2. models on manifolds (Riemann surfaces, homogeneous spaces, Teichmüller space,
complements of links and knots)
3. gravitating systems (extremal black holes, Chern-Simons gravity, general relativity)
4. dark matter models (µ-deformed bosons, Bose-Einstein condensate DM with
two-phase structure and two-particle composites)



1. Many-particle systems
1.1 Revealing extra dimensions in the quark-gluon system
1.2 Photon gas with Planck upper bound of energy
1.3 The role of statistics in an ensemble of extremal black holes



1.1 Revealing extra dimensions in the quark-gluon system

In the 2000s, models of microscopic BHs were considered for an arbitrary number d
of extra spatial dimensions, which prompted us to find the most probable d.

Assuming (2008) that the 4-dim Universe exists, but in the presence of dense matter
(quarks+gluons) with a certain EMT, extra dimensions with the d-torus topology and
periodic coordinates ϕn ∈ [0, 2πL], n = 1, d may appear. Their size L is resulted
from the concept of Arkani-Hamed, Dimopoulos and Dvali (ADD), as for the mBH:

M2+d
f

∫
ddϕ =M2

Pl, and Mf ∼MEW ∼ 103 GeV at d = 2,

where Mf is new fundamental mass in 4 + d dimensions, the Planck mass MPl.

We characterize 3 dimensions by the scale factor a, and d dimensions by b ≤ 1 in
the fireball region r < rfb ≃ 7 fm, and formulate Einstein equations in 4 + d
dimensions with a source (MIT-bag) for the space-time interval

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) + b2(t)
d∑

n=1
dϕ2n.

The Hamiltonian constraint gives the quantum Wheeler–DeWitt equation with the
potential W (a) = Ba3 + CT 4/a (B1/4 = 200 MeV) in terms of ξ = abd/2, v = bd:[

ξ2
∂2

∂ξ2
−

12d

d+ 2
v2

∂2

∂v2
+ κ2 ξ

3

√
v
W

(
ξ
√
v

)]
Ψd = 0,

here κ2 ≡ 24M2
PlV

2
fb ≈ 2.5 · 1036 MeV−4. It has a correct limit at d = 0.

Further, we use the WKB approximation due to the large κ2, and b = 1 in Ψd>0.



▶ Mode of confinement: B ≫ T 4

Let matter, with pressure P < 0, collapse in 3
dimensions to some 0 < a0 < 1 for all d.
Then, the amplitude of transition “3”→“3 + d”
(using the Kummer function U(a, b, z)) is

|⟨3|3 + d⟩| =
∣∣1 + iµzU

(
1, 5

3
,−iµz

)∣∣
µ ≡ κ

√
Ba30/3, z =

√
1 + 4d

6−d
− 1

Probability density P(d) for d results in
1) dmax = 6 (as in the string theory);
2) ⟨d⟩ = 2 (as in the ADD model) for µ ≈ 0.11.

Probability density

P(d) =
|⟨3|3+d⟩|2∫ 6

0 |⟨3|3+x⟩|2dx
▶ Mode of radiation dominance: B ≪ T 4

In terms of quasi-momentum k(T ) = κ
√
CT 2, the amplitude and probability

of transition from 3-dim with kin = k(Tin) to (3 + d)-dim with kfin = k(Tfin):

⟨3, kin|3 + d, kfin⟩ = δ(kin − kfin)−
3d

2(d+ 2)

1

kfin
θ(kin − kfin)

Prob(d) = 1−
3d

2(d+ 2)

1

kin
.

Here, revealing extra dimensions is accompanied by cooling, when Tfin ≤ Tin,
and the probability increases with growing initial temperature Tin of the matter.



1.2 Photon gas with Planck upper bound of energy

At high energies and temperatures, instead of the addition law ϵtot = ϵ1 + ϵ2,
we introduce “κ-addition” Etot = E1 ⊕κ E2 according to the double special
relativity (DSR) and κ ≃MPl (or ≃Mf):

a⊕κ b =

a
1−a/κ

+ b
1−b/κ

1 + 1
κ

(
a

1−a/κ
+ b

1−b/κ

) , E ⊕κ κ = κ.

Applying the Planck limit to each mode with frequency ω = c|k| and photon
number nω in volume V (2019), the partition function is written as

lnZtot =
∑
ω

lnZω , Zω =
∞∑

n=0

zn exp

(
−

βℏωn
1 + ℏω(n− 1)/κ

)
.

Restricting ourselves to MFA (βκ→ 0), the exact expression Zω is replaced by

ZMFA
ω =

eβκ(σω−1)

1− z
.

Here, the mean field σω = Λ(z, µω) is defined by fugacity z, µω = ℏω/κ, and

Λ (z, µω) ≡ (1− z)

∞∑
n=0

1− µω

1 + µω(n− 1)
zn.



The total energy and pressure of photons in MFA:

EMFA =
V κ4

π2(ℏc)3
ε0(z),

PMFA = −
κ4

π2(ℏc)3

[
T

3κ
ln (1− z) + ε0(z)

]
.

Monotonic function ε0(z) =
∫ 1
0 [1− Λ(z, µ)]µ2dµ

(ε0(0) = 0, ε0(1) = 1/3) determines the upper
bound of energy density (dashed lines), to which
the exact value (solid curves) approaches. Besides,
EMFA ∝ κ4 at T → ∞, while E ∝ T 4 → ∞
according to the Stefan-Boltzmann law.

The condition PMFA = 0 determines the threshold
temperature:

TMFA
thr (z)

κ
= −3

ε0(z)

ln (1− z)
, lim

z→0

TMFA
thr (z)

κ
=

3

4

Thus, the presence of TMFA
thr (and z < 1) indicates an

additional attraction, requiring energy to overcome it.

Heat capacity CMFA = V
T2

κ5

π2(ℏc)3 η(z), where
η(z) ∝ z(1− z), reflects a zone structure of photon
spectrum.

Energy density

Threshold temperature



1.3 The role of statistics in an ensemble of extremal black holes

The possibility of compensating the forces of gravitational attraction and electrostatic
repulsion in an N -particle system under the condition eZ = m (G = c = ℏ = 1) for the
charge eZ and mass m of each particle is reflected in the exact Majumdar–Papapetru
solution to the Einstein–Maxwell equations for static and extremal black holes (eBHs)
with centers in {ai ∈ R3}Ni=1 for 1.04 · 1018 GeV ≤ m < MPl and 1 ≤ Z ≤ 11:

ds2 = −U−2
N (r) dt2 + U2

N (r) dr2, UN (r) = 1 +
N∑
i=1

m

|r− ai|
.

Here, the effect of gravitational time delay at the point r ∈ R3\{Bi}Ni=1, Bi is the vicinity
of eBH with the event horizon r+ = m, is described by dτ/dt = U−1

N (r), where τ and t
are the proper and global times. We estimate (2019) the average time delay σd in a
statistical ensemble of eBHs with the mean number Nd, which are determined by the
fugacity z and the type of statistics dN (the weight of configurations with N eBHs) as

σd = Z−1
d

∞∑
N=0

dNz
N ⟨U−1

N (r)⟩, Nd = ∂z lnZd, Zd =
∞∑

N=0

dNz
N .

For a uniform eBH distribution without intersections, taking into account the translational
invariance of the model and only the points of space allowed for the observer, the dominant
contribution to the configurational mean is calculated:

⟨U−1
N (r)⟩ ≃

1

1 + µN
, µ =

r+

R
< 1,

where R is a radius (size) of the system, µ is the model parameter.



In different statistics we compare the value σd as a function
of the average number N of eBHs, when a larger time delay
appears at smaller values of σd.

– Bose-Einstein statistics (BE): dN = 1;
– Infinite statistics (Inf): dN =

Γ([N/2]+1/2)
Γ(1/2) Γ([N/2]+1)

Inf looks most likely (A.Strominger, 1993);
– Classical statistics (Cl): dN = 1/N !;
– Fermi-Dirac statistics (FD): dN = g!

N ! (g−N)!
.

One has that 1) σInf > σBE due to repulsion in Inf;
2) σBE > σCl, since Cl unphysically enhances the attraction
due to the excess number of ensemble replicas;
3) the weakest effect in FD (due to the Pauli exclusion
principle) can be established from the approximate
functions σd, N for small fugacity z.

Thus, the difference in the time flow can reach ∼ 10%
in different statistics, which significantly affects the
dynamics of processes in the Universe with the BHs.



2. Models on manifolds
2.1 The torus universe and spectra of characteristics
2.2 Stiefel nonlinear sigma model near two dimensions



2.1 The torus universe and spectra of characteristics

To study the time evolution of the geometry of topologically non-trivial spaces (e.g. of
extra dimensions), we consider known Riemann surfaces in 2D. Here we consider a torus.

According to (Witten, 1989), (2+1)-gravity is equivalent to the Chern-Simons theory in
terms of the triad eaµ and the spin connection ωa

µ. Non-trivial exact solutions arise due to
the topology of the space and additional interactions. Let us focus on the action integral
on T 2 = R2/Z2 and with the “angular” momentum Iµa = const:

S = 1
2

∫
ϵµνλeaµ

(
∂νωλa − ∂λωνa + ϵabcω

b
νω

c
λ

)
d3x−

∫
Iµaω

a
µd

3x,

where the metric gµν = ηabe
a
µe

b
ν with ∥ηab∥ = diag(−1, 1, 1); ϵ012 = 1.

This Iµa preserves the curvature form Ra[ω] = 0 and sets the torsion form Ta = −I0a .

We choose the global variables (ui, p
i), i = 1, 2, and find solutions of field equations

using the Dirac’s mechanics with constraints combined with the homotopy group.

Here, one has 2 independent abelian holonomies (Wilson loops).

Setting x0 = t and the gauge-fixing ea0 = δa0 , ωa
0 = 0, the solutions are (2004):

ωa
i = γaui, eai = ϵijp

jγa + tEa
i , i, j = 1, 2,

where terms E0
i = ϵijI

j
0 , Eα

i = −uiϵαβγβ − ϵijI
j
α − ϵαβγβ(ϵij/uj)I

0
0 and an arbitrary

space-like vector γa are constant in time t; ϵ12 = −ϵ21 = 1.
Given the model constraints, the Dirac bracket defines the Poisson bracket {ui, pj} = δji .

▶ Geometrically, the basis vectors of the torus are obtained T⃗α = (eα1 , e
α
2 ), linear in t and

depended on momentum Iµa , what covers the result of (K.Ezawa, 1994).



In (2+1) dimensions, the spectra of “length” L (of space-like intervals), “time” T (of
time-like intervals) and area A are of interest. Quantizing, it is required that the states do
not depend on the evolution parameter (according to the principle of general relativity),
and L ∼ ℓ, T ∼ τ and A ∼ a, where ℓ, τ and a are the smallest dimensional (Planckian)
quantities. However, different quantization schemes can lead to different results, but with
a common feature of discreteness/continuity and asymptotics (for macroscopic objects).
We show this and a new effect for metrics in conformal form by introducing the generator
J0 = u2p1 − u1p2 and the Casimir Q =

(
u1p1 + u2p2

)2 of so(2, 1) (or su(1, 1)).

▶ Spectra of characteristics reproduced for Iµa = 0 (Freidel, Livine & Rovelli, 2003)
Interval ds20 = Q

(
−dt2 + dϕ2 + t2dψ2

)
results in:

T0 = τ
√
−Q 7→ T̂Ψ = τ

√
n(n− 1) Ψ (discrete spectrum of “time”)

L0 = ℓ
√
Q 7→ L̂Ψ = ℓ

√
s2 + 1/4 Ψ; (continuous spectrum for s ∈ R)

A0 = τQ 7→ ÂΨ = aτ(s2 + 1/4) Ψ (the gap presence due to quantum fluctuations)

▶ Time level splitting obtained for Iiα = ϵijϵαβujγ
βhJ0 (2005)

The interval ds2I = (1− hJ0)2 ds20 and “time” TI = (1− hJ0)T0 determines
the spectrum of proper time as a function of parameter h > 0:

T̂IΨ = τ
√
n(n− 1)|1− hm| Ψ for |m| < n

similarly to the Zeeman effect (for atoms with so(3)-spin in external magnetic field)

Thus, the interaction at m = ±1 either increases (1 + h)T0 or decreases (1− h)T0
the time interval compared to the expected T0, what may depend on the directions
of the time-like geodesic (particle) and rotation in the universe.



2.2 Stiefel nonlinear sigma model near two dimensions

The action integral A and the Lagrangian L of NLSM in d = 2 + ε Euclidean dimensions:

A = 1
2T

∫
Lddx, L = Tr

(
∇U⊤g∇U

)
, g(U ;λ) = IN + (λ− 1)UU⊤,

where the temperature T , N × k-matrix field U(x) ∈ SO(N)/SO(N − k), U⊤U = Ik,
gradient ∇ = (∂/∂x1, ..., ∂/∂xd), and parameter (of the metric anisotropy) λ > 0.

Geometric properties are encoded in Christoffel function of the second kind (Hüper, 2021),

Γ(ξ, η) = 1
2
U

(
ξ⊤η + η⊤ξ

)
+ (1− λ)Π

(
ξη⊤ + ηξ⊤

)
U ; Π = IN − UU⊤,

and the curvature (1, 3)-tensor for tangent vectors ξ, η, ϕ ∈ T M (D.Nguyen, 2022)

R(ξ, η)ϕ = DηΓ(ξ, ϕ)−DξΓ(η, ϕ) + Γ(η,Γ(ξ, ϕ))− Γ(ξ,Γ(η, ϕ)),

where the derivative Dξ in the direction ξ at the point U is involved.

Using the background field method, we represent U = U0 + V − (1/2)Γ(V, V )− . . . in
terms of the slow field U0 and normal (fast) coordinates V to get U⊤U = U⊤

0 U0 = Ik.

In the 1-loop approximation, we restrict ourselves to the Lagrangian quadratic in V :

L[U ] = L[U0] + 2Tr(∇U⊤
0 g0∇̂V ) + Tr[(∇̂V )⊤g0∇̂V ]− K̃(∇U0, V ),

where the covariant derivative ∇̂V = ∇V + Γ(V,∇U0) and the biquadratic (0, 4)-form
K̃(ξ, η) = Tr[η⊤gR(ξ, η)ξ] (G.Jensen, 1975) are taken in the metric g = g0 ≡ g(U0;λ).

We renormalize g = g(U ;λ) (2024) by adding the covariant counterterms h to the bare
metric g0 = g(U0;λ) and expanding in ε = d− 2 for the scale µ:

g = µεg0 + h.



Quantum averaging over V results in the IR divergence
at ε→ 0: ⟨⟨K̃(∇U0, V )⟩⟩ = Ric(∇U0,∇U0)∆(0), where

∆(0) = T
Ωd−1

(2π)d

∫
µ

kd−3dk = −
T

2πε
−

T

2π
lnµ+O(ε).

Eliminating ε−1-terms using the scaling factors Z’s for
t = T/(2π) and τ = t/λ at the metric components, one
gets beta-functions βt = dt/ds, βτ = dτ/ds for s = lnµ:

βt = εt− [N − 2− λ(k − 1)]t2,

βτ = ετ −
[
λ2(N − k) +

k − 2

4

]
τ2,

determined by the Ricci tensor components in [...].
Given βλ = dλ/ds by using βλ/λ = βt/t− βτ/τ , one
has the sink (λ−; t−) and the saddle point (λ+; t+);

λ± =
N − 2

2(N − 1)

[
1±

√
1−

(k − 2)(N − 1)

(N − 2)2

]
,

t± =
ε

N − 2− λ±(k − 1)
.

For d > 2 and 2 < k < N , the sink •, at which 4 phases
meet, seems tetracritical (expected to appear in super-
conductivity with Anderson (de)localization).
At k = 2 and d > 2, the sink • becomes bicritical point.

Beta-functions (3/3)

1

Top row: N = 12 and k = 9. Left: d = 2.2. Right: d = 2.
Bottom row: N = 5 and k = 2. Left: d = 2.1. Right: d = 2.

A.V. Nazarenko (BITP) Stiefel σ-model 19.12.2024 18 / 19

RG trajectories and velocity field
Top: N = 12, k = 9, d = 2.2

Bottom: N = 5, k = 2, d = 2.1

Vertical lines - Einsteinian spaces



3. Models of Bose-condensate dark matter
3.1 Dense and dilute phases of DM
3.2 Two-axion composite (dimer) and Feshbach resonance



3.1 Dense and dilute phases of DM
To improve the description of the observables (rotational curves, etc.), we replace models
with pair interaction in the Thomas–Fermi approximation (T.Harko; P.Chavanis et al) by
models with quantum fluctuations and multiparticle self-interaction VSI, but without flows
(it means that the condensate wave function ψ is real, and ψ2 is the particle density):
▶ VSI =

U
3
ψ6 (2020): DM halo model “core (2 phases)+tail”; “right” scaling of the mass-radius ratio

▶ VSI =
U2
2
ψ4 + U3

3
ψ6 (2021): dominating rarefied phase in M81-galaxy

▶ VSI =
U
v
[1− cos (

√
vψ)]− U

2
ψ2 = U

[
− v

4!
ψ4 + v2

6!
ψ6 − ...

]
(axionlike SI) (2023)

for central regions of spherical DM halo with relatively high particle density
The starting point is the extremization of the
(free-energy) functional F by taking into account
the Poisson equation ∆rVgr = 4πGmψ2 for
m ≃ 10−22 eV/c2:

F = 4π

∫ R

0

[
ℏ2

2m
(∂rψ)

2 − µψ2 +mVgrψ
2 + VSI

]
r2 dr

Here we focus on the model with (2+3)-particle
SI, which evolves spatially in terms of dim-less
quantities χ =

√
m/ρ0ψ, ξ = r/r0 as

1

2
∆ξχ+ uχ−Aχφ−Qχ3 −Bχ5 = 0, ∆ξφ = χ2,

where ∆ξ is the radial part of Laplace operator.

A = 10, B = 20, Q = 1.36
ublack ≃ 0.149,
ured ≃ −0.502,
ugreen ≃ −2.046



Defining the chemical potential µ(ξ), which
involves the gravitational potential and quantum
fluctuations, and using the Gibbs–Duhem and
Euler relations, we obtain the particle density σ,
internal pressure P and internal energy E based
on the solution χ(ξ) parametrized by u at T = 0:

σ =
3

ξ3B

∫ ξB

0
χ2(ξ) ξ2dξ,

P =
3

ξ3B

∫ ξB

0
p(ξ) ξ2 dξ, p(ξ) =

Q

2
χ4(ξ) +

2

3
Bχ6(ξ),

E =

∫ ξB

0
ε(ξ) ξ2 dξ, ε(ξ) =

Q

2
χ4(ξ) +

1

3
Bχ6(ξ).

For galactic DM cores with a central mass density ρ0 ≃ 10−20 kgm−3 and radius ≲ 1 kpc,
we take the measure of gravitational interaction A ∼ 10 to estimate r0:

r0 ≃ 0.824 kpc

[
A

10

]1/4 [
mc2

10−22 eV

]−1/2 [
ρ0

10−20 kgm−3

]−1/4

.

The characteristic energy density is evaluated as

ε0 ≃ 33.82 eV cm−3

[
A

10

]−1/2 [
mc2

10−22 eV

]−1 [
ρ0

10−20 kgm−3

]3/2
.

In the pressure units, 33.82 eV cm−3 ≃ 5.42× 10−12 Pa.



3.2 Two-axion composite (dimer) and Feshbach resonance

▶ When a bound state has E ∼ 0, how to pass a
particle (p2) with E ∼ 0 through a domain wall?
⇒ Apply two channels (1, 2) + resonance
transition between them ⇒ the Feshbach
resonance concept:

▶ The appearance of a dimer with E > 0 & finite
lifetime is detected due to resonant scattering in
an open channel (2)

▶ The scattering length a varies in an infinite range
(Feshbach phenomenon)

Resonance zone: ξ ∈ [0;L]

Two-channel QM is given by stationary coupled Schrödinger eqs with Hamiltonians
H1,2 = −∂2ξ + U1,2(ξ) determining χ(1) and χ(2) for the closed and open channels:

(H1 +Q− E)χ(1) +Ωχ(2) = 0,

(H2 − E)χ(2) +Ω†χ(1) = 0,

where Q = E(2) − E(1) is an energy gap at Ω = 0 (when E is 2-degenerated).
Energy level E splits under action of “external impact”:

Ω(ξ) = −ω2 θ(L− ξ), Ω† = Ω.

Model parameters are V (potential), ω2 (impact), Q (gap), L (resonance zone width).

The unperturbed solutions: H1χak(ξ) = 0 → χak(ξ) = 4 arctan exp (L− ξ) (antikink)
(H2 − E)τ0 = 0 → τ0(ξ) = sinKξ, K =

√
E + V



Solution in the first approximation (and 1d):

χ(1)(ξ) =
λ

N(L)
⟨ξ|χak⟩,

χ
(2)
< (ξ) = τ0(ξ)−

λ

N(L)
⟨ξ|G(+)

2 Ω†|χak⟩,

χ
(2)
> (ξ) = A sin (kξ + δ),

where the normalization N(L) = ⟨χak|χak⟩;
G

(+)
2 = (H2 − E − iϵ)−1, k =

√
E.

We extract info on dimer from the phase shift δ.

Multiplier λ indicates the “dressed” state:

λ =
⟨χak|Ω|τ0⟩

E −Q+N−1(L)⟨χak|ΩG
(+)
2 Ω†|χak⟩

=
⟨χak|Ω|τ0⟩

E −Q+ ω4∆L(K) + iω4γL(K)

Scattering length a(ω2) at E → 0− determines
the dimer 1d-wave-function ∝ exp (−ξ/a) and
the binding energy Ebind ≃ −1/a2 for a≫ L.
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Resonance zone: ξ ∈ [0;L]

a(ω2) = abg

(
1 +

αω4
c

ω4 − ω4
c

)
leads to the diversity of a in galaxies



At k ̸= 0, a pole Eres = E0 − iΓ0/2 of S-matrix
(its element) is found from the equation:

K2 = V+Q−ω4

[
∆L(K) + iγL(K)

k cotKL− iK

K cotKL− ik

]
,

where k =
√
K2 − V and E = K2 − V .

We numerically obtain E0 ≃ 0.175 and Γ0 ≃ 0.148,
as well as

√
Eres = kres − iæres with kres ≃ 0.427.

The phase shift near the resonance is

δ(k) = δ0 − arctan
æres

k − kres
,

δ(kres − 0)− δ(kres + 0) = π.

The cross-section (from the optic theorem in 1d):

σ(k) = 2 sin2 δ(k).

���� ��� ���� ���� ����

����

���

����

���

����

�

���

�

���

�

� ��

��

� ��

��

L = 5, Q = 0.15,
√

V = 0.2

For a typical time scale τ = mr20/ℏ ≃ 9.7 · 105 yrs for ultralight DM in (dwarf) galaxies,
the lifetime of the dimer is being (2023)

tD =
2τ

Γ0
≃ 1.313 · 107 yrs

This allows dimers’ participation in the formation of large-scale DM structures. The
question arises about the internal degrees of freedom of DM particles that lead to
two-channel scattering.



Summary

1. It is shown that quark-gluon matter can provide, under ADD conditions, a non-zero
probability of manifestation of extra dimensions, whose number is <6 in the confinement
regime and unlimited, but determined by temperature, in the radiation-dominated regime.
2. Given the law of addition of 4-momenta with the Planck upper bound, thermodynamic
functions and modified Stefan-Boltzmann law of black body radiation are found. We show
that radiation occurs at temperatures above the threshold and with a limited energy density.
3. For an ensemble of extremal black holes described by the static Majumdar–Papapetrou
solution to the Einstein–Maxwell equations, the average value of the gravitational time
delay differs in Bose–Einstein, infinite, Fermi–Dirac, and classical statistics.
4. Using the Hamiltonian approach, it is described the time evolution of the geometry of
torus space in (2+1)-dimensional Chern-Simons gravity with a model source, whose
presence, upon quantization, leads to the splitting of degenerate states of proper time.
5. Focusing on the (2 + ε)-dim NLSM on a real Stiefel manifold, the background-field
method and normal coordinates are used for the quantum consideration and a RG
description in terms of 2 effective charges to reveal tetracriticality in physics.
6. Having obtained solutions to the stationary Gross–Pitaevskii equation with gravitational
and nonlinear self-actions, as well as thermodynamic functions, dense and dilute states of
dark matter (DM) and the first-order phase transition between them are revealed.
7. Based on the Feshbach resonance, the mechanism of formation of long-lived dimers,
which can participate in the formation of large-scale DM structures, is elucidated. The
same mechanism explains the scattering length variety.

THANK YOU FOR ATTENTION!
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