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1. Composite bosons (quasibosons) as entangled bipartite system.
Entangled / bound states of composite particles � effectively,
as deformed oscillators.

2. Representation of composite bosons operators by deformed os-
cillator ones.

3. The representation for �fermion+deformed boson� composite
fermi-like particles (CFs).
Using deformed constituents as well.

4. Entanglement measures, between constituents of composite bo-
son (or fermionic analogs). Link with deformation parameter,
and with energy.

5. Use of the representation (realization) when constructing de-
formed Bose gas models aimed at e�ective description of
interaction/ compositeness of particles

6. Conclusions.



Motivation.
Composite (quasi)particles in diverse branches of physics:

∙ Mesons, baryons, nuclei in nuclear or subnuclear physics;

∙ Excitons, biexcitons, dropletons in semiconductors and nanostruc-
tures (quantum dots etc.);

∙ Trions (�2 electrons + hole� or �2 holes + electron�) in semicon-
ductors;

∙ Cooper pairs in superconductors, in the study of electron transport;

∙ Bipolarons in crystals, organic semiconductors;

∙ Composite fermions (�electron + magnetic �ux quanta� bound
states) appearing in fractional quantum Hall e�ect;

∙ Biphotons in quantum optics, quantum information;

∙ Biphonons, triphonons, ... in crystals;

∙ Atoms, molecules, ... .



Hydrogen atom viewed as quasiboson

The creation operator for hydrogen atom1 with zero total mo-
mentum and quantum number 𝑛

𝐴†
0𝑛 =

(2𝜋ℏ)3/2√
𝑉

∑︁
p

𝜑p𝑛𝑎
(𝑒)†
p 𝑏

(𝑝)†
−p , (1)

where 𝑎
(𝑒)†
p and 𝑏

(𝑝)†
−p are the creation operators for electron and

proton respectively taken with opposite momenta. The momentum-
space wavefunction 𝜑p𝑛 is determined by the Schrodinger equation:

𝜑p𝑛=

∫︁
𝑒

𝑖
ℏpr

(2𝜋ℏ)3/2
𝜑𝑛(r)𝑑

3r; −ℏ2∇2

2𝑚
𝜑𝑛(r)+𝑈(r)𝜑𝑛(r)=𝐸𝑛𝜑𝑛(r).

Expansion (1) can be viewed directly as the Schmidt decomposition

for the state 𝐴†
0𝑛|0⟩ with Schmidt coe�cients 𝜆p = (2𝜋ℏ)3/2√

𝑉
𝜑p𝑛.

1Note that similar ansatz is used for the excitonic creation operators



Composite particles

Creation& annihilation operators:

𝐴†
𝛼 =

∑︁
𝜇𝜈

Φ𝜇𝜈
𝛼 𝑎†𝜇𝑏

†
𝜈 ,

𝐴𝛼 =
∑︁

𝜇𝜈
Φ
𝜇𝜈
𝛼 𝑏𝜈𝑎𝜇,

𝑁𝛼 = 𝑁𝛼(𝑎
†
𝜇, 𝑎𝜇, 𝑏

†
𝜈 , 𝑏𝜈).

Commutator:

[𝐴𝛼, 𝐴
†
𝛽] = 𝛿𝛼𝛽−∆𝛼𝛽

[︀
Φ𝜇𝜈
𝛾

⃒⃒
𝑎𝜇, 𝑏𝜈

]︀
.

Closed-form relation holds[︀
[𝐴𝛼,𝐴

†
𝛽],𝐴

†
𝛾

]︀
=−𝜖

∑︁
𝛿
𝐶𝛿
𝛼𝛽𝛾(Φ)𝐴

†
𝛿,

𝐶𝛿
𝛼𝛽𝛾 depend on wavefunctions Φ.

Deformed oscillators

Generalized oscillator algebra:⎧⎪⎨⎪⎩
𝒜†

𝛼𝒜𝛼 = 𝜙(𝒩𝛼),

[𝒜𝛼,𝒜†
𝛼] = 𝜙(𝒩𝛼 + 1)− 𝜙(𝒩𝛼),

[𝒩𝛼,𝒜†
𝛼] = 𝒜†

𝛼, [𝒩𝛼,𝒜𝛼] = −𝒜𝛼.

Commutator:

[𝒜𝛼,𝒜†
𝛼] = 1 + 𝛿𝜙(𝒩𝛼)

Example. Arik-Coon deformation

𝜙(𝒩𝛼) =
[︀
𝒩𝛼

]︀
𝑞
≡ 𝑞𝒩𝛼 − 1

𝑞 − 1
,

[𝒜𝛼,𝒜†
𝛼] = 1− (𝑞 − 1)

[︀
𝒩𝛼

]︀
𝑞
;[︀

[𝒜𝛼,𝒜†
𝛽],𝒜

†
𝛾

]︀
=−

∑︁
𝛿
̃︀𝐶𝛿
𝛼𝛽𝛾(𝑞;𝒩𝛿)𝒜†

𝛿.



Deformed oscillators

De�ned as nonlinear generalization of ordinary quantum oscillator
by deformation structure function 𝜙(𝑁),

[𝑎, 𝑎†] = 1 + 𝛿𝜙(𝑁), 𝛿𝜙(𝑁) ≡ 𝜙(𝑁 + 1)− 𝜙(𝑁)− 1

with Fock space: |𝑛⟩ = 1√
𝜙(𝑛)!

(𝑎†)𝑛|0⟩.
The realization/modelling of composite bosons (e.g. mesons, ex-

citons, cooperons etc.) by deformed oscillators allows to:

▶ �forget� the internal structure details;

▶ considerably simplify the calculations by applying the theory of

deformed oscillators only.

Operators of composite particles map to the deformed oscillator op-
erators. The internal structure information enters into deformation
parameter(s).



Quasibosons’ operators as Deformed oscillators’ ones
Composite (quasi-)boson creation/annihilation operators 𝐴†

𝛼, 𝐴𝛼

(mode 𝛼) are represented by deformed oscillator ones

𝐴†
𝛼 =

∑︁
𝜇𝜈

Φ𝜇𝜈
𝛼 𝑎†𝜇𝑏

†
𝜈 → 𝒜†

𝛼 , 𝐴𝛼 =
∑︁

𝜇𝜈
Φ𝜇𝜈
𝛼 𝑏𝜈𝑎𝜇 → 𝒜𝛼 , (2)

which obey standard de�nition:

𝒜†
𝛼𝒜𝛼=𝜙(𝒩𝛼), [𝒜𝛼,𝒜†

𝛽] = 𝛿𝛼𝛽
(︀
1 + 𝛿𝜙(𝒩𝛼)

)︀
,

Φ𝜇𝜈
𝛼 is the composite's wavefunction, and constituent operators

𝑎𝜇, 𝑏𝜈 are both fermionic (or both bosonic2).

We �nd wavefunctions & resp. operators 𝐴𝛼, 𝐴
†
𝛼, 𝑁𝛼≡𝜙−1(𝐴†

𝛼𝐴𝛼)
behaving on Co-boson states as if for 𝜙-deformed oscillator

[𝐴𝛼, 𝐴
†
𝛽] = 𝛿𝛼𝛽 − 𝜖∆𝛼𝛽 = 𝜙(𝑁𝛼 + 1)− 𝜙(𝑁𝛼) at 𝛼 = 𝛽,

[𝑁𝛼, 𝐴
†
𝛼] = 𝐴†

𝛼, [𝑁𝛼, 𝐴𝛼] = −𝐴𝛼,
(3)

with ∆𝛼𝛽 ≡
∑︁

𝜇𝜇′
(Φ𝛽Φ

†
𝛼)

𝜇′𝜇𝑎†𝜇′𝑎𝜇+
∑︁

𝜈𝜈′
(Φ†

𝛼Φ𝛽)
𝜈𝜈′𝑏†𝜈′𝑏𝜈 ↔ ∆𝜙(𝒩𝛼).

2𝜖 = +1/− 1 – for boson/fermion constituents respectively



Realization conditions (3) reduce to equations for Φ𝛼 and 𝜙(𝑛):

Φ𝛽Φ
†
𝛼Φ𝛾 +Φ𝛾Φ

†
𝛼Φ𝛽 = 0, 𝛼 ̸= 𝛽,

Φ𝛼Φ
†
𝛼Φ𝛼 = 𝜇̃Φ𝛼, 𝜇̃ = 1− 1

2
𝜙(2),

𝜙(𝑛+ 1) =
∑︁𝑛

𝑘=0
(−1)𝑛−𝑘𝐶𝑘

𝑛+1𝜙(𝑘), 𝑛 ≥ 2.

Their solution yields:
∙ deformation structure function 𝜙𝜇̃(𝑁) = (1 + 𝜖𝜇̃)𝑁 − 𝜖𝜇̃𝑁2

with
∙ deformation parameter 𝜇̃= 1

𝑚 , 𝑚 ∈ N (𝑚�positive integer);
∙ matrices

Φ𝛼=𝑈1(𝑑𝑎) diag
{︀
0..0,

√︀
𝜇̃ 𝑈𝛼(𝑚), 0..0

}︀
𝑈 †
2(𝑑𝑏), (4)

where 𝑈1(𝑑𝑎), 𝑈2(𝑑𝑏), 𝑈𝛼(𝑚) are arbitrary unitary matrices of di-
mensions 𝑑𝑎 × 𝑑𝑎, 𝑑𝑏 × 𝑑𝑏 and 𝑚×𝑚.



Generalization to quasibosons, composed of 𝑞-fermions
Commutation relations for the constituent 𝑞-fermions:

𝑎𝜇𝑎
†
𝜇′ + 𝑞𝛿𝜇𝜇′𝑎†𝜇′𝑎𝜇 = 𝛿𝜇𝜇′ , 𝑏𝜈𝑏

†
𝜈′ + 𝑞𝛿𝜈𝜈′ 𝑏†𝜈′𝑏𝜈 = 𝛿𝜈𝜈′ ,

𝑎𝜇𝑎𝜇′ + 𝑎𝜇′𝑎𝜇 = 0, 𝜇 ̸= 𝜇′, 𝑏𝜈𝑏𝜈′ + 𝑏𝜈′𝑏𝜈 = 0, 𝜈 ̸= 𝜈 ′.

The nilpotency is absent (as opposed to the previous case):

𝑞 < 1 ⇒ (𝑎†𝜇)
𝑘 ̸= 0, (𝑏†𝜈)

𝑘 ̸= 0, 𝑘 ≥ 2. (5)

Solving the conditions analogous to (3) we obtain:

▶ Resulting expression for the structure function:

𝜙(𝑛) =
(︀
[𝑛]−𝑞

)︀2
=

(︁1− (−𝑞)𝑛

1 + 𝑞

)︁2
, 𝑞 < 1. (6)

▶ Solution for matrices Φ𝛼 at 𝑞 < 1:

Φ𝜇𝜈
𝛼 = Φ𝜇0(𝛼)𝜈0(𝛼)

𝛼 𝛿𝜇𝜇0(𝛼)𝛿𝜈𝜈0(𝛼), |Φ𝜇0(𝛼)𝜈0(𝛼)
𝛼 | = 1.

This solution is NOT entangled for 𝑞 < 1! Reason � overcomplete-
ness of basis (5). ⇒ “Physics” subspace should be reduced.
For more details see:
[1] A. Gavrilik, I. Kachurik, Yu. Mishchenko, J. Phys. A 44, 475303 (2011).



“Fermion + Deformed boson” composite fermions
CFs' creation/annihilation operators are given by �ansatz� (2);

𝑎†𝜇, 𝑎𝜇 & 𝑏†𝜈 , 𝑏𝜈 � operators for constituent def. bosons & fermions,

𝑎†𝜇𝑎𝜇 = 𝜒(𝑛𝑎
𝜇), [𝑎𝜇, 𝑎

†
𝜇′ ] = 𝛿𝜇𝜇′

(︀
𝜒(𝑛𝑎

𝜇+1)−𝜒(𝑛𝑎
𝜇)
)︀
; [𝑎†𝜇, 𝑎

†
𝜇′ ] = 0.

⇒ Fermionic nilpotency (𝐴†
𝛼)2 = 0.

For nondeformed constituents (𝜒(𝑛) ≡ 𝑛) anticommutator yields

{𝐴𝛼, 𝐴
†
𝛽} = 𝛿𝛼𝛽 +

∑︁
𝜇𝜇′

(Φ𝛽Φ
†
𝛼)

𝜇′𝜇𝑎†𝜇′𝑎𝜇−
∑︁

𝜈𝜈′
(Φ†

𝛼Φ𝛽)
𝜈𝜈′𝑏†𝜈′𝑏𝜈 ,

So, the concerned CFs' operators are realized by fermion operators.
The validity of the realization on one-CF states yields

(Φ𝛽Φ
†
𝛼Φ𝛾)

𝜇𝜈 − (Φ𝛾Φ
†
𝛼Φ𝛽)

𝜇𝜈+

+
(︀
𝜒(2)− 2

)︀[︀
(Φ𝛽Φ

†
𝛼)

𝜇𝜇Φ𝜇𝜈
𝛾 − (Φ𝛾Φ

†
𝛼)

𝜇𝜇Φ𝜇𝜈
𝛽

]︀
= 0. (7)

For non-deformed constituents:{︃
Tr(Φ𝛽Φ

†
𝛼) = 𝛿𝛼𝛽,

Φ𝛽Φ
†
𝛼Φ𝛾 − Φ𝛾Φ

†
𝛼Φ𝛽 = 0.

(8)



a) Single CF mode 𝛼 case. General solution:

Φ𝛼 = 𝑈𝛼 diag{𝜆(𝛼)
1 , 𝜆

(𝛼)
2 , ...}𝑉 †

𝛼

with 𝜆
(𝛼)
𝑖 ≥ 0,

∑︀
𝑖(𝜆

(𝛼)
𝑖 )2 = 1, and arbitrary unitary 𝑈𝛼, 𝑉𝛼.

b) CFs in 2 modes & non-deformed constituents in 3 modes.

The parametrization of two orthonormal vectors (𝜆
(𝛼)
1 , 𝜆

(𝛼)
2 , 𝜆

(𝛼)
3 ),

𝛼 = 1, 2 follows from 𝑆𝑈(3) parametrization, e.g.

𝜆
(1)
1 = cos 𝜃1 cos 𝜃2, 𝜆

(2)
2 = cos 𝜃1 sin 𝜃2, 𝜆

(3)
3 = sin 𝜃1;

and 𝜆
(2)
1 = − sin 𝜃1 cos 𝜃2 cos 𝜃3 − sin 𝜃2 sin 𝜃3𝑒

𝑖𝛾 ,

𝜆
(2)
2 = cos 𝜃2 sin 𝜃3𝑒

𝑖𝛾 − sin 𝜃1 sin 𝜃2 cos 𝜃3, (9)

𝜆
(2)
3 = cos 𝜃1 cos 𝜃3, 0 ≤ 𝜃1, 𝜃2, 𝜃3 ≤ 𝜋/2, 0 ≤ 𝛾 ≤ 2𝜋.

Solution for any number of modes (non-def. CF constituents).

Φ𝛼 = 𝑈 diag{𝜆(𝛼)
1 , 𝜆

(𝛼)
2 , ...}𝑉 †

where 𝑈 , 𝑉 are �xed (for any 𝛼) unitary matrices, 𝜆(𝛼) =

(𝜆
(𝛼)
1 , 𝜆

(𝛼)
2 , ...) are complex orthonormal vectors. Compare with (4).



Interpretation of the involved parameters. The concerned pa-
rameters 𝜃𝑖, 𝑖 = 1, 3, and 𝛾 (the 3-mode case) should correspond
to CF internal quantum numbers like spin, the ones determining CF
binding energy, etc.

Possible applications: trions, baryons. The results involving non-
trivial deformation 𝜒 may be applied to e�ective description of three-
component composite particles e.g. when two constituents form
a bound state (𝜒-deformed boson). For the modeling of compos-
ite constituent boson, the quasibosons realization could be applied.
Proper combination of two realizations, � quasibosonic and CF ones,
� can provide an alternative e�ective description of tripartite com-
plexes like:

▶ trions (e.g. exciton-electron or �2 electrons + hole� composites),

▶ baryons (as either three quark or quark-diquark bound state).

These issues deserve special detailed study.

For composite (quasi-) fermions' realization see:
[2] A. Gavrilik, Yu. Mishchenko, Ukr. J. Phys. 64(12), 1134 (2019).



Entanglement in composite boson vs deformation

parameter [A. Gavrilik, Yu. Mishchenko, PLA 376, 1596 (2012)]

The state of the quasiboson which can be realized by deformed
oscillator is entangled (inter-component entanglement):

|Ψ𝛼⟩=
∑︁𝑚

𝑘=1

1√
𝑚
|𝑣𝛼𝑘 ⟩⊗|𝑤𝛼

𝑘 ⟩, |𝑣𝛼𝑘 ⟩=𝑈𝜇𝑘
1 |𝑎𝜇⟩, |𝑤𝛼

𝑘 ⟩= 𝑈̃𝑘𝜈
2 |𝑏𝜈⟩,

𝜆𝛼
𝑘 = 𝜆 =

√︀
𝜇̃ =

√︀
1/𝑚. (10)

Calculation of the entanglement characteristics yields:
▶ Schmidt rank 𝑟 = 𝑚;
▶ Schmidt number (𝑃 � the purity of subsystems)

𝐾 =

[︂∑︁
𝑘
(𝜆𝛼

𝑘 )
4

]︂−1

= 1/𝑃 = 𝑚; (11)

▶ Entanglement entropy 𝑆entang = −
∑︁

𝑘
(𝜆𝛼

𝑘 )
2 ln(𝜆𝛼

𝑘 )
2= ln(𝑚);

▶ Concurrence 𝐶 =

[︂
𝑟

𝑟 − 1

(︁
1−

∑︁
𝑘
(𝜆𝛼

𝑘 )
4
)︁]︂1/2

= 1.

Remark. Strongly entangled composite boson (high 𝑚) ap-
proaches standard boson at small quantum numbers 𝑛:

𝜙(𝑛) ≈ 𝜙𝑏𝑜𝑠𝑜𝑛(𝑛) ≡ 𝑛, 𝑛 ≪ 𝑚, 𝑚 ≫ 1.



Generalization to multi-quasiboson states
Example 1. Multi-quasiboson state, one mode

|𝑛𝛼⟩ = [𝜙(𝑛𝛼)!]
−1/2(𝐴†

𝛼)
𝑛𝛼 |0⟩ (12)

(𝜙-factorial 𝜙(𝑛)!
𝑑𝑒𝑓
= 𝜙(1)...𝜙(𝑛)).

Entanglement characteristics for (12):

𝐾𝜖=+1=𝐶𝑚
𝑛𝛼 , 𝐾𝜖=−1=𝐶𝑛𝛼

𝑚+𝑛𝛼−1;

𝑆entang|𝜖=+1=ln𝐶𝑚
𝑛𝛼 , 𝑆entang|𝜖=−1=ln𝐶𝑛𝛼

𝑚+𝑛𝛼−1.

Example 2. 𝑛-quasiboson Fock states with 1 quasiboson per mode:

|Ψ⟩ = 𝐴†
𝛾1 · ... ·𝐴

†
𝛾𝑛 |0⟩, 𝛾𝑖 ̸= 𝛾𝑗 , 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, ..., 𝑛.

Entanglement characteristics:𝐾𝜖=+1 = 𝐾𝜖=−1 = 𝑚𝑛;

𝑆entang|𝜖=+1 = 𝑆entang|𝜖=−1 = 𝑛 ln(𝑚).

Example 3. For the coherent state (two bosonic constituents)

|Ψ𝛼⟩=𝐶(𝒜;𝑚)
∑︁∞

𝑛=0

𝒜𝑛

𝜙(𝑛)!
(𝐴†

𝛼)
𝑛|0⟩, 𝐴𝛼|Ψ𝛼⟩ = 𝒜𝛼|Ψ𝛼⟩

Schmidt number and Entanglement entropy were also calculated.



Energy dependence of Quasiboson’s Entanglement entropy
[A.M. Gavrilik, Yu.A. Mishchenko, J. Phys. A 46, 145301 (2013)]

Entanglement characteristics between the constituents of a qua-
siboson and their energy dependence are important in quantum in-
formation research: in quantum communication, entanglement pro-
duction/enhancement, particle addition or subtraction etc.
We take the Hamiltonian of deformed oscillators system as

𝐻 =
1

2

∑︁
𝛼

ℏ𝜔𝛼

(︀
𝜙(𝑁𝛼) + 𝜙(𝑁𝛼 + 1)

)︀
. (13)

Single quasiboson case

𝑆ent(𝐸) = ln
𝜖

3
2 − 𝐸

ℏ𝜔
=

⎧⎪⎨⎪⎩
− ln

(︁3
2
− 𝐸

ℏ𝜔

)︁
, 𝜖 = 1,

1

2
≤ 𝐸

ℏ𝜔
≤ 3

2
,

− ln
(︁ 𝐸

ℏ𝜔
− 3

2

)︁
, 𝜖 = −1,

3

2
≤ 𝐸

ℏ𝜔
≤ 5

2
.

The corresponding plots are presented on Fig. 1, Fig. 2.



Figure 1: Dependence of the entan-
glement entropy 𝑆ent on the energy
𝐸𝛼 for a single composite boson in
the case of fermionic components
i.e. at 𝜖 = +1.

Figure 2: Dependence of the entan-
glement entropy 𝑆ent on the energy
𝐸𝛼 for a single composite boson in
the case of bosonic components i.e.
at 𝜖 = −1.



The entanglement entropy for the hydrogen atom is given by

𝑆ent = −
∑︁
p

|𝜆p|2 ln |𝜆p|2 = −
∑︁
p

(2𝜋ℏ)3

𝑉
|𝜑p𝑛|2 ln

(︁(2𝜋ℏ)3
𝑉

|𝜑p𝑛|2
)︁
.

(!) Remark: 𝐻-atom cannot be exactly realized by quadratically
deformed oscillators.
Let us consider the simplest case of quantum numbers 𝑙=0,𝑚=0.

Figure 3: Dependence of the entanglement entropy Δ𝑆 = 𝑆ent − 𝑆
(0)
ent on the

energy 𝐸 for Hydrogen atom.



Effective deformed models
Approach A. Deformed are underlying relations (microscopic, as
usually) for a physical system:

𝑅(𝑚)(𝐴𝑘, 𝐵𝑘) = 0 → 𝑅(𝑚)
𝑞 (𝐴𝑘, 𝐵𝑘) = 0.

For instance, deformed (nonlinear) oscillator is de�ned by the struc-
ture function 𝜙 and relations

𝑎†𝑎 = 𝜙(𝑁), 𝑎𝑎† = 𝜙(𝑁 + 1) ⇒ [𝑎, 𝑎†] = 1 + 𝛿𝜙(𝑁).

Approach B. Standard/nondeformed relations apply, but � to some-

way deformed physical quantities (usually macroscopic):

𝐹𝑖 → 𝐹
(𝑞)
𝑖 , 𝑅(𝐹𝑖) = 0 → 𝑅(𝐹

(𝑞)
𝑖 ) = 0.

In 𝑞-Bose gas model of [N. Swamy, 2009] and others, the particle

number is deformed say as: 𝑁 (𝑞) = 𝑧𝒟(𝑞)
𝑧 ln𝑍(0)

using deformed (Jackson's) derivative 𝒟(𝑞)
𝑧 . Then, other thermody-

namic quantities could be derived.
Approach C. . . . (other variants)



𝜇̃, 𝑞-deformed Bose gas model ###1:
deformation of thermodynamics
In our 𝜙-Bose gas model (type B), total number of particles

𝑁 (𝜙)=𝜙
(︁
𝑧
𝑑

𝑑𝑧

)︁
ln𝑍(0) ≡𝑧𝒟(𝜙)

𝑧 ln𝑍(0)=
𝑉

𝜆3

∞∑︁
𝑛=1

𝜙(𝑛)
𝑧𝑛

𝑛5/2

where 𝑧 = 𝑒𝛽𝜇 � fugacity, ln𝑍(0) = −
∑︀

𝑖 ln(1 − 𝑧𝑒−𝛽𝜀𝑖) and the

𝜙-derivative 𝒟(𝜙)
𝑧 is used (like Jackson's 𝑞-derivative):

𝑧
𝑑

𝑑𝑧
→ 𝑧𝒟(𝜙)

𝑧 = 𝜙
(︁
𝑧
𝑑

𝑑𝑧

)︁
.

(Deformed) Partition function 𝑍(𝜙) is recovered from 𝑁 (𝜙) =(︀
𝑧 𝑑
𝑑𝑧

)︀
ln𝑍(𝜙). So we obtain 𝜙-deformed virial (𝜆3/𝑣)-expansion

𝑃 (𝜙)𝑣(𝜙)

𝑘B 𝑇
= 1− 𝜙(2)

27/2
𝜆3

𝑣(𝜙)
+

(︂𝜙(2)2

25
− 2𝜙(3)

37/2

)︂(︂ 𝜆3

𝑣(𝜙)

)︂2
+ . . .

where 𝑣(𝜙) = 𝑉
𝑁(𝜙) is speci�c volume, 𝜆 = ℎ/

√
2𝜋𝑚𝑘𝐵𝑇 � thermal

wavelength.



Second virial coefficient for a gas with interaction.
As known,

𝑉2−𝑉
(0)
2 =−81/2

∑︁
𝐵

𝑒−𝛽𝜀𝐵 − 81/2

𝜋

∑︁′

𝑙

(2𝑙+1)

∫︁ ∞

0
𝑒−𝛽 ℏ2𝑘2

𝑚
𝜕𝛿𝑙(𝑘)

𝜕𝑘
𝑑𝑘

where 𝐵 runs over bound states, 𝑙 is the angular momentum, and
𝛿𝑙(𝑘) partial wave phaseshift. In low-energy approximation we retain
only the 𝑙 = 0 summand (𝑠-wave approximation). Resp. phaseshift
𝛿0(𝑘) is determined by Schrodinger eq. for a speci�ed interaction.

The gas of non-interacting but composite bosons. Using the
anzats 𝐴†

𝛼 =
∑︀

𝜇𝜈 Φ
𝜇𝜈
𝛼 𝑎†𝜇𝑏

†
𝜈 and the known formula

𝑉2 =
1

2!𝑉

[︁(︁
Tr1 𝑒

−𝛽𝐻1

)︁2
− Tr2 𝑒

−𝛽𝐻2

]︁
. (14)

if for all (k, 𝑛)-modes (𝐴†
k,𝑛)

2|0⟩ ≠ 0 we obtain that in the absence
of explicit interaction between composite bosons

𝑉2(𝑇 )− 𝑉
(0)
2 = − 1

25/2

(︁∑︁
𝑛
𝑒−2𝛽𝜀𝑖𝑛𝑡

𝑛 − 1
)︁
. (15)



Effective account for the both factors
[A. Gavrilik, Yu. Mishchenko, Phys. Rev. E 90, 052147 (2014)].

Interparticle interaction. In [N. Swamy, J.Stat.Mech (2009)] the 𝑞-

deformation given by structure function [𝑁 ]𝑞 ≡ 1−𝑞𝑁

1−𝑞 was interpreted
as incorporating the interparticle interaction.

Compositeness of particles. In [Gavrilik et al, J.Phys.A (2011)]
composite (two-fermion or two-boson) quasi-bosons with cre-
ation/annihilation operators (2) were realized by def. bosons with
quadratic SF 𝜙𝜇̃(𝑁).

Unification of 𝜇̃- and 𝑞-deformations. The e�ective descrip-
tion of the both mentioned factors may be expected from a
combination of SFs [𝑁 ]𝑞 and 𝜙𝜇̃(𝑁) (as certain approximation).
The simplest (but non-unique) variant:

𝜙𝜇̃,𝑞(𝑁)=𝜙𝜇̃

(︀
[𝑁 ]𝑞

)︀
=(1+𝜇̃)[𝑁 ]𝑞 − 𝜇̃[𝑁 ]2𝑞 (16)



Deformed vs. microscopic 2𝑛𝑑 virial coefficient:
deformation parameter(s) explicitly
We use the �rst deformed virial coe�cients,

𝑉
(𝜇̃,𝑞)
2 = −𝜙𝜇̃,𝑞(2)

27/2
, 𝑉

(𝜇̃,𝑞)
3 =

𝜙𝜇̃,𝑞(2)
2

25
− 2𝜙𝜇̃,𝑞(3)

37/2
(17)

to juxtapose with resp. results in microscopic description. Parameter
𝜇̃ corresponds to the compositeness, 𝑞 � to interparticle interaction.

Effective account for the compositeness up to (𝜆3/𝑣)2-terms.
In the absence of explicit interaction between quasibosons, cf. (15),

𝑉2(𝑇 ) = − 1

25/2

∑︁
𝑛
𝑒−2𝛽𝜀𝑖𝑛𝑡

𝑛

On the other hand: 𝑉
(𝜇̃,𝑞)
2 −𝑉

(0)
2 |𝑞=1=

2−𝜙𝜇̃,𝑞(2)

27/2
|𝑞=1=

𝜇̃
25/2

.
After equating,

⇒ 𝜇̃ = 𝜇̃(𝜀𝑖𝑛𝑡𝑛 ,Φ𝜇𝜈
𝛼 , 𝑇 ) = 1−

∑︁
𝑛
𝑒−2𝛽𝜀𝑖𝑛𝑡

𝑛 . (18)

* Temperature dependence of def. parameter 𝜇̃(. . . , 𝑇 ) appears un-
expected since in our interpretation 𝜇̃ characterizes just particles'
substructure of deformed Bose gas.



𝜇̃, 𝑞-deformed Bose gas model ###2:
deformation of particle operators

� Correlation function intercepts for certain 𝜇̃, 𝑞-deformed Bose gas
were calculated, and compared to STAR (RHIC) experiment on 𝜋𝜋-
correlations.

� This 𝜇̃, 𝑞-deformed Bose gas model (type A) is based on 𝜇̃, 𝑞-
deformation structure function 𝜙𝜇̃,𝑞(𝑁),

𝜙𝜇̃,𝑞(𝑁) = 𝜙𝜇̃

(︀
[𝑁 ]𝑞

)︀
= (1 + 𝜇̃)[𝑁 ]𝑞 − 𝜇̃

(︀
[𝑁 ]𝑞

)︀2 ≡ [𝑁 ]𝜇̃,𝑞,

where [𝑁 ]𝑞 ≡ 1−𝑞𝑁

1−𝑞 .

� Detailed analysis of application of this model is given in

[A. M. Gavrilik, Yu. A. Mishchenko, Nucl. Phys. B 891, 466 (2015)].



Conclusions

∙ For quasibosons built of 2 fermions, 2 bosons or 2 𝑞-fermions their
operator representation as deformed oscillators (`deformed bosons')
with quadr. structure function is found. The �fermion + def. boson�
composite fermi-particles were also treated.

∙ The deformation parameter turned out to be unambiguously deter-
mined by entanglement characteristics for realized composite bosons.
Thus, inter-component entanglement reveals the physics meaning of
the deformation parameter.

∙ The relation of 2nd virial coe�cient of resp. 𝜇̃, 𝑞-deformed Bose
gas model to the parameters of compositeness (interaction) is found.
Def. parameter 𝜇̃ relates to internal energy levels of quasibosons (𝑞 �
to the scattering length and effective radius of interaction).
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