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Literature

This talk is partially based on a paper:

Hasmik Poghosyan, Rubik Poghossian, ”A note on rank 5/2
Liouville irregular block, Painlevé I and the H0
Argyres-Douglas theory”, arXiv:2308.09623
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The Painlevé equations

The Painlevé I equation is defined by

d2q

dt2 = 6q2 + t.

It’s a Hamiltonian system

H(p, q, t) = p2

2 − 2q3 − tq.

The isomonodromic tau function τ(t) defined by

∂t log τ(t) = H(t).

https://en.wikipedia.org/wiki/Painlevé transcendents
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Linear problem for PI

Consider a system of matrix differential equations

∂zΦ = A(z , t)Φ, ∂tΦ = B(z , t)Φ,

with 2 × 2 matrices A(z , t) and B(z , t)

A(z , t) = A2(t)z2 + A1(t)z + A0(t),

B(z , t) = B1(t)z + B0(t),

Zero curvature condition gives PI equation

∂tA− ∂zB + [A,B] = 0.

O. Lisovyy, J. Roussillon, ”On the connection problem for
Painlevé I”, arXiv:1612.08382
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Types of singularities

Connection matrix A(z , t) can have singularities in z-plane

A(z , t) ∼ Ares

(z − a)1+r
⇒ Φ(z) ∼ exp

(
−Ares

r
(z − a)−r

)

r = 0 – regular singularity
r > 0 – irregular singularity

In PI case the only singular point is z = ∞ of rank r = 3.
However, the residue Ares is not diagonalizable ⇒ rank of

asymptotics is r = 5/2
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Motivation: short

Why do we study the Painlevé equations?

Because of a huge interplay between different branches of
theoretical physics and mathematics.
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Motivation: less short

In early 2010’s it was found remarkable formulas for tau functions
of Painlevé equations near regular singularities.

Gamayun O, Iorgov N and Lisovyy O, Conformal field theory
of Painlevé VI, 2012
Gamayun O, Iorgov N and Lisovyy O, How instanton
combinatorics solves Painlevé VI, V and IIIs, 2013

Symbolically, tau functions have the form

τ(t) =
∑
n∈Z

e inρZ (ν + n;θ; t)

where ρ, ν – monodromy parameters (initial data), θ – parameters
of equation, Z (ν;θ; t) – Nekrasov’s partition function.
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Painlevé I

What about behavior of tau function near irregular singularities?

It was conjectured that tau functions are pretty the same as in the
regular cases

τ(t) =
∑
n∈Z

e inρZAD(ν + n;θ; t),

but ZAD is partition function of Argyres–Douglas theories.
Giulio Bonelli, Oleg Lisovyy, Kazunobu Maruyoshi, Antonio
Sciarappa and Alessandro Tanzini, On Painlevé/gauge theory
correspondence, 2016

Remark: parameter t lies on some critical rays and goes to infinity.

8 / 19



Painlevé I
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What about behavior of tau function near irregular singularities?
It was conjectured that tau functions are pretty the same as in the
regular cases

τ(t) =
∑
n∈Z

e inρZAD(ν + n;θ; t),

but ZAD is partition function of Argyres–Douglas theories.
Giulio Bonelli, Oleg Lisovyy, Kazunobu Maruyoshi, Antonio
Sciarappa and Alessandro Tanzini, On Painlevé/gauge theory
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Asymptotics of PI tau function
Asymptotics for t → −∞

τ(t) =
∑
n∈Z

e inρZAD(ν + n; t),

Fourier coefficients ZAD

ZAD(ν, t) = C (ν)Ztree(ν, t)Zinst(ν, t),

Nice time variable
s = 24

1
4 (−t)

5
4 ,

Nonperturbative part

Ztree(ν, t) = exp
(
s2

45 + 4iνs
5

)
s−

1
60−

ν2
2 ,

Perturbative part

Zinst(ν, t) = 1 +
∞∑
k=1

Bk(ν)
sk

.
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Argyres–Douglas partition function from CFT

There is a conjecture that ZAD can be found using irregular
representations of Virasoro algebra

1 integer rank
D. Gaiotto and J. Teschner, Irregular singularities in Liouville
theory and Argyres-Douglas type gauge theories, 2012
H. Nagoya, Irregular conformal blocks, with an application to
the fifth and fourth Painlevé equations, 2015

2 half integer rank
H. Poghosyan, R. Poghossian, ”A note on rank 5/2 Liouville
irregular block, Painlevé I and the H0 Argyres-Douglas
theory”, 2023
T. Nishinaka et al, ”Liouville Irregular States of Half-Integer
Ranks”, 2024
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Virasoro algebra

Generators of Virasoro algebra {Ln, c} comute as

[Ln, Lm] = (n −m)Ln+m + cδn+m,0
n3 − n

12 , [Ln, c] = 0.

with n ∈ Z.
Wikipedia: Virasoro algebra

We fix central charge c to be

c = 1 + 6Q2
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Representation theory

Highest weight module V∆ is built using vector |∆⟩

L0|∆⟩ = ∆|∆⟩, Ln>0|∆⟩ = 0.

Generators with negative n generate module from |∆⟩

V∆ = Span {L−Y |∆⟩ |Y ∈ Young diagrams}

where

L−Y = Lnk−k . . . L
n2
−2L

n1
−1, |Y | = n1 + 2n2 + · · · knk .
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Generalized representations

Rank-n representations is built using vector |I (n)⟩

Lk |I (n)⟩ = Lk |I (n)⟩,

where Lk = 0 for k > 2n and nonzero number for
k ∈ {n, n + 1, . . . , 2n}
Generators with k ∈ {0, 1, . . . n − 1} can be built as
differential operators.

Conjectured in: D. Gaiotto, ArXiv:0908.0307
Existence theorem: V. Mazorchuk, K. Zhao, ArXiv: 1205.5937
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Example: integer rank

Let us present rank-2 representation

Lk |I (2)⟩ = Lk |I (2)⟩, k ≥ 0,

with Lk>4 = 0 and

L0 = c0(Q − c0) + c1
∂

∂c1
+ 2c2

∂

∂c2
,

L1 = 2c1(Q − c0) + c2
∂

∂c1
,

L2 = c2(3Q − 2c0) − c2
1 ,

L3 = −2c1c2, L4 = −c2
2 .

D. Gaiotto and J. Teschner, ArXiv:1203.1052
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Example: half-integer rank

Let us present rank-5/2 representation

Ln|I (5/2)⟩ = Ln|I (5/2)⟩, n ≥ 0,

with Ln>5 = 0 and

L0 = c1
∂

∂c1
+ 2c2

∂

∂c2
+ 5Λ5

∂

∂Λ5
,

L1 = 2c2
1c

2
2

Λ5
+ 2c3

2 − 3c1Λ5
2c2

2

∂

∂c1
+ 3Λ5

2c2

∂

∂c2
,

L2 = Λ5
2c2

∂

∂c1
,

L3 = −2c1c2, L4 = −c2
2 , L5 = −Λ5.

H. Poghosyan, R. Poghossian, arXiv:2308.09623
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Irregular conformal blocks
We can built correlation function

Z = ⟨0|I (5/2)⟩ ∼ ZAD ,

where ⟨0| is the vaccum state

⟨0|Ln = 0, n ≤ 1.

Rank 5/2 state can be embeded (conjecturally) into rank 2
module

|I (5/2)⟩ = f |ψ⟩,
where f is a function of c1, c2,Λ5 defined as

f −1L(5/2)
k f = L(2)

k + O(Λ5).

and |ψ⟩ is a vector in rank-2 module

|ψ⟩ = |I (2)⟩ +
∞∑
k=1

Λk
5 |I

(2)
k ⟩, ⟨0|ψ⟩ ∼ Zinst
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Our results

Vector |ψ⟩ can be defined as a solution of

L5|ψ⟩ = ε|ψ⟩, L4|ψ⟩ = 1
4 |ψ⟩, L3|ψ⟩ = 0,

(
L2 − 2εL1 + 6ε2L0

)
|ψ⟩ =

(
30ε3 ∂

∂ε
− ν

)
|ψ⟩,

where ε ∼ (−t)−5/8.
Vector |ψ⟩ can be found uniquely in the form

|ψ⟩ = G |I (2)⟩, G = 1 +
∞∑
k=1

µkGk ,

Gk =
k∑
l=0

l=k mod 2

∑
2m0+|Y |+m1=l

CY ;m0,m1L−Y L
m0
0 Lm1

1 .
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Outline

1 To find recursion relations for other irregular conformal blocks
2 Relation with topological recursion construction of K.Iwaki,

ArXiv: 1902.06439

ψ(z) = ”Baker–Akhiezer function” =
⟨0|Vdeg(z)|I (5/2)⟩

⟨0|I (5/2)⟩
.
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End

Thanks to organisers of ”KMPB-Ukraine Workshop” for their work!
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