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Biography of the generic symplectic geometer

1 Begin undergraduate studies in physics, full of enthusiasm for
elementary particles and cosmology.

2 Discover an affinity for abstract definitions and rigorous proofs.

3 Take a QFT course and get very, very confused. . .

4 Switch to Plan B: Ph.D. in mathematics!

Many people with this background end up in symplectic geometry,
apparently because Hamiltonian mechanics seems cooler when there are
differential forms involved.
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1 Begin undergraduate studies in physics, full of enthusiasm for
elementary particles and cosmology.

2 Discover an affinity for abstract definitions and rigorous proofs.

3 Take a QFT course and get very, very confused. . .

4 Switch to Plan B: Ph.D. in mathematics!

Many people with this background end up in symplectic geometry,
apparently because Hamiltonian mechanics seems cooler when there are
differential forms involved.

dH = ω(·, XH) ⇒ LXH
ω = 0 ⇒ flow preserves volume

⇒ WOW!
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How physics inspires pure mathematics

Examples

(Prehistoric) Dirac ⇝ Atiyah-Singer, Yang-Mills ⇝ Donaldson

(1985–90’s) Topological σ-models (Witten) + string vacua (Vafa) +
pseudoholomorphic curves (Gromov)⇝
Gromov-Witten theory / quantum cohomology

Each closed symplectic manifold X has a Gromov-Witten potential:

This is a symplectic invariant, but is studied more in algebraic geometry.
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Why symplectic topology?

Darboux’s theorem: For every symplectic manifold (X,ω),

(X,ω)
locally∼=

R2n,

n∑
j=1

dpj ∧ dqj

 .

This means there can be no interesting local symplectic invariants, in
contrast e.g. with Riemannian geometry, in which curvature is a local
invariant of Riemannian manifolds up to isometry.

Message: All interesting symplectic invariants are global, not local.
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Symplectic field theory (Eliashberg-Givental-Hofer 2000)

SFT generalizes GW-theory to study punctured holomorphic curves in
symplectic cobordisms with contact boundary: ∂X = Y+ ⊔ (−Y−).

Some natural questions in symplectic and contact topology

1 Which closed contact manifolds Y can be filled by compact
symplectic manifolds X, i.e. ∂X = Y ?

2 Given two contact manifolds Y±, do there exist symplectic
cobordisms from Y− to Y+?

3 How are the answers to those questions related to the classification
of contact structures on a given manifold?
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Rigidity and flexibility

In his 1986 ICM talk, Mikhail Gromov popularized the distinc-
tion between “soft” and “hard” symplectic geometry.

SYMPLECTIC GEOMETRY:

flexible

rigid

flexible

rigid

Basic insight: The most interesting stuff is on the borderline.
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Rigidity and flexibility

Rigidity (hard) comes from invariants:
Gromov-Witten, Floer homology, Symplectic Field Theory,
Seiberg-Witten. . .

Examples of symplectic rigidity

The standard contact structure on the 3-sphere has a unique
symplectic filling up to deformation and blowup. (Gromov ’85 + Eliashberg ’89)

Overtwisted contact manifolds have no symplectic fillings.
(Gromov ’85 + Eliashberg ’89 + Niederkrüger ’06)

The 3-torus admits an infinite sequence of contact structures that are
homotopic as 2-plane fields but not isotopic. (Giroux ’94)
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Rigidity and flexibility

Flexibility (soft) comes from h-principles:
e.g. Smale sphere eversion;

Whitney-Graustein theorem:

γ0, γ1 : S
1 → R2 are regularly homotopic ⇔ wind(γ̇0) = wind(γ̇1)

~

Examples of symplectic flexibility

Open manifolds admit symplectic structures if and only if they
admit almost complex structures. (Gromov ’69)

Two overtwisted contact structures are isotopic if and only if they
are homotopic. (Eliashberg ’89 + Borman-Eliashberg-Murphy ’15)
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Algebra of SFT

Contact manifold Y ⇝ supersymmetric operator algebra:
closed Hamiltonian orbits γ in R× Y ⇝ operators pγ , qγ satisfying

[pα, qβ] = ℏδαβ, [pα, pβ] = [qα, qβ] = 0.

Counting holomorphic curves in R× Y ⇝ SFT generating function:

This is not an invariant, but. . .
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Algebra of SFT

Theorem/definition

H2 = 1
2 [H,H] = 0, and in certain super-Lie-algebra representations

(e.g. setting pγ := ℏ ∂
∂qγ

), H defines the differential in a homological

contact invariant HSFT
∗ (Y ), functorial under symplectic cobordisms.

Intuition (from Floer homology): H2 counts isolated “broken” curves,
which form the boundary of a 1-dimensional moduli space.
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Algebraic torsion in contact manifolds

Simplistic example

Suppose R× Y has exactly one rigid holomorphic curve, with genus 0,
no negative ends, and positive ends at orbits γ1, . . . , γk.

...

...

Then H = ℏ−1pγ1 . . . pγk . Substituting pγi = ℏ
∂

∂qγi
gives

H (qγ1 . . . qγk) = ℏk−1

⇒ [ℏk−1] = 0 ∈ HSFT
∗ (Y ).

Definition

AT(Y ) ∈ N ∪ {0,∞} is the smallest k such that [ℏk] = 0 ∈ HSFT
∗ (Y ), or

∞ if no such k < ∞ exists.
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Algebraic torsion in contact manifolds

overtwisted

fillable

tight

Torsion theorem (Latschev-W. [GAFA 2011])

1 AT(Y ) = 0 if and only if Y is algebraically overtwisted.

2 If AT(Y ) < ∞, then Y has no symplectic fillings.

3 ∃ exact symplectic cobordism Y− ⇝ Y+ =⇒ AT(Y−) ≤ AT(Y+).

4 There exist contact manifolds Y taking all possible values of AT(Y ).
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Cobordism obstructions from holomorphic curves

Example: What goes wrong if AT(Y−) = 2 and AT(Y+) = 1?
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Recent work: Transversality questions in moduli spaces

Calabi-Yau 3-folds have the special feature that all moduli spaces of
closed holomorphic curves have virtual dimension 0.

But spaces of branched covers of embedded curves always have moduli.

Super-rigidity theorem (W. [Ann. of Math. 2023])

For generic almost complex structures J in a Calabi-Yau 3-fold, all moduli
spaces M(J) of closed J-holomorphic curves are smooth orbifolds with
well-defined obstruction bundles whose Euler numbers compute the
Gromov-Witten invariants.

Work in progress:
Understand bifurcations in M(J) under generic 1-parameter deformations
{Js}s∈[0,1]. This should lead to a mathematical definition of the BPS
invariants nA,h ∈ Z appearing in the Gopakumar-Vafa formula:∑

A ̸=0, g≥0

GWg,A t2g−2qA =
∑

A ̸=0, h≥0

nA,h

∞∑
k=1

1

k

(
2 sin

kt

2

)2h−2

qkA
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