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Research overview

AdS/CFT
@ Spectral problem of AdSsx CFTy:

planar A" = 4 SYM theory <> AdSs x S° superstring theory

e Quantum Spectral Curve for -deformed AdSs x S° super string
theory

@ Structure of 4-point functions in supergravity limit
e (Conformal) Regge theory to study 'horizontal trajectories’.
Long-range integrability
@ Special Schrédinger operators (Calogero-Sutherland) and their
deformations (Ruijsenaars-Schneider)

o related PDEs; similar to KdV, Heisenberg ferromagnet and
Landau-Lifshitz equation

@ and related spin chains: Inozemtsev, Haldane-Shastry and
g-deformations
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Long-range integrability
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Calogero-Sutherland models

Schrédinger operators

1 N 2 N
H=-33 o talg+1) Vig —x0)

2~0 ‘

j=1 J Jj<k

@ g coupling constant

@ the potentials

1 Vi)~ L

V(x) ~ p(x)

sinh? x”
define the Calogero-Sutherland (CS) models.

@ are quantum-integrable
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Physics (trig)

Condensed matter

@ 1/x%-interactions are the critical case for long-range order [thotess, 1969]
[Hauke, Tagliacozzo, 2013]

@ For g > 1, the excitations behave as anyons, obeying a generalised
Pauli exclusion principle. [Haldane, 1992]
High-energy
@ Second quantisation C standard chiral CFT [azuma, Iso, 1094] [Carey, Langmann, 1999]
@ Non-polynomial CS-eigenfunctions <> correlators in a CFT with

W—Sym metry [Estienne,Pasquier, Santachiara, Serban, 2012]

@ Bethe/Gauge correspondence relates this model to N = 2 susy gauge
theOI’y [Nekrasov, Shatashili, 2009]
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Integrability

Trigonometric:
@ Cherednik-Dunkl operators [punki, 1989] [Cherednik, 1991]

N N
H ~ %de, di = 81—%Zcot%(xj—xk)(l—sjk)—...
Jj=1 k#j
@ sj permutes coordinates x; < xj
o diagonalise d; instead = Jack-polynomials
@ d; form a degenerate affine Hecke algebra
@ and induce a Yangian action by affine Schur-Weyl duality prinfeid, 1986]
What about elliptic?
o elliptic d; [Buchstaber, Feider, Veselov, 1994]
o KZB-equations <+ eigenfunctions [relder, Varchenko, 1995]
@ Second quantisation sits in finite-temperature QFT of anyons [Langmann,

2001]

but no algebraic structure is known
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Why elliptic?

@ novel quantum algebras, e.g. elliptic quantum groups, (elliptic)
quantum toroidal algebras

@ would make the anyonic QFT tractable

o forms the intermediate interaction-range, i.e. connects to the
short-range regime
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Why is elliptic intermediate range?

Quantum many-body system (QMBS)
Extend to spin-CS:

1 N 2 N

H=->% -+ glg+Pu)V(x—x)
2~ Ox# 4
j=1""7  j<k

@ Pj exchanges spins v; @ vy — v, @ vje C" oo CF
@ then freeze 'T — 0’ [Polychronakes, 1993], O rather take special classical limit
of a hybrid system [Lyashik, Reshetikhin, Sechin, 2024] [Chalykh, 2024]

Spin chain

N
H=2 V(5 —x)1 - Px)
i<k



Landscape
QMBS nearest- L )
spin chain neighbour elliptic trig
? ell. CS trig. CS
Heisenberg XXX Inozemtsev Haldane-Shastry
[Inozemtsev, 1990-1997]  [Haldane (1988), Shastry (1988)]
potential

interaction-length



Two paradigms

Range
Integrable
Yangian
Y(S/2 )

Spectrum

N

> (1= Pijr1)
j=1
Heisenberg

Short-range

(Algebraic) Bethe
ansatz
does not commute
with H

solving Bethe
equations

Connecting them would

Py sin® T.(j — k)
Haldane-Shastry
Long-range (1/r?)
by freezing a
QMBS

does commute
with H

consists of irreps
of Y(sh)

o allow us to study the effect of interaction range

@ unify two paradigms of quantum integrability



Elliptic spin chain

) ‘EXtended, Bethe ansatz [Inozemtsev 90-97, RK, Lamers 2020]
@ Thermodynamic Bethe ansatz [r, 2014]

@ Some control over spectrum:
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Landscape |l

QMBS nearest- .. .
spin chain neighbour e///pt/c trlg
lliptic  foeery
elliptic Heisenberg xvz
tri ? ell.RS trig. RS
g Heisenberg xxz g—Inozemtsev g—Haldane-Shastry
[RK Lamers, 2024] [Uglov, 97]
c [Lamers, 2018]
o
e}
(O]
o ? I. CS trig. CS
o . 7 ell. rig.
b= rational Heisenberg xxx Inozemtsev Haldane-Shastry
c [Inozemtsev, 1990-1997]  [Haldane (1988), Shastry (1988)]
Ay potential

interaction-length RS = Ruijsenaars-Schneider



El | i ptiC RU ijsen aars [Ruijsenaars, 1986]

Finite-difference operators

D, = > Al(x) T T

IC{1,...N}|l|=n icl

M= e 0. x; s x; — ihe,

@ has [Dp, D] =0
o D1+ Dy'Dy—1 — HEY



Elliptic spin Ruijsenaars

Choose an elliptic R-matrix (for some rank r > 2)

face Felder's dynamical R-matrix [reider, 1004], satisfies dynamical Yang-Baxter
equation

vertex Baxter-Belavin's symmetric R-matrixX [gaxter, 1972, Belavin 1981] OF itS SUSY
version satisfies quantum Yang-Baxter equation

then for each Pf°t = s; i11R; it1(xi — xj+1) forms an Sy-rep on

H=Fun(x)o VN v=C’



Elliptic spin Ruijsenaars

X X
Represent R(x) = ><
X/ X//
then the first Hamiltonian is
v xi X
N Xi .
D, = ZA,-(X) X € e{ =T;=e 0 Xx; =x;—ihe
i=1 Xi_
Xl ces X[_ e XN
N

= > Ai(x) Ri—yi(xii1) - Ria(xi1) Ti Ria(ar) - Ricpi(xi17)
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Properties

Face [RK,Lamers,2024]
e [Dp,Dpy] =0
o fits in the landscape
@ Prime candidate for algebraic structure: elliptic quantum toroidal
algebra [konno, Oshima, 2023-2024]
Vertex [Matushko, Zotov, 20222023]
e [Dn, D] =0
@ generates a twisted landscape
@ algebraic structure (7?)

contact  elliptic trigonometric

HEY —— Hyz — Huz

HY —— Huw —— Hrk

[RK, Lamers, 2024] [Fukui, Kawakami, 1992]
[Hikami Wadati, 1993]



Discussion

Closing in on mechanisms of elliptic integrability
o elliptic Hecke algebra and Macdonald theory
@ Is the whole vertex landscape a twisted version of the face landscape?
@ Do other R-matrices also work?

More broadly:

@ dynamical R-matrices

@ quantum algebras @ Spin chains

o elliptic functions @ Quantum many-body systems
@ higher genus theta functions o CFT (e.g. Louiville, WZW)

© boundary Yang-Baxter equation @ Fractional/para- statistics

@ orthogonal

polynomials /functions o (Deformed) sigma models

@ Hecke algebras
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Conformal Regge theory
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Regge theory

Proton-(anti-)proton scattering:

t

S —

p, P p,p

When s > t, Regge theory predicts that then [regge, 1959
A(t) ~ ()

a(t) is a Regge trajectory, «(0) is the intercept

t-channel exchange of a resonance with spin «a(t) ~ S(t)

leading contribution is the Pomeron

but in App — App that disappears: the Odderon becomes dominant
Characterising it is hard, ongoing discussion
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Conformal Regge theory

A— <OION>

t— A

Regge limit — a certain light-cone limit [costa, Goncalves, Penedones, 2012]
OPE becomes

<01(92(93(94> ~1— f0102(9f03(9405a(0)+alA +...

where s measures boost between operators.
but the details are very subtle, requiring analytic continuation of CFT
data (Lorentzian inversion formula [caron-tuot, 2016]). But here the math
actually works!
Regge trajectories — Light-ray operators: [kravchuk, Simons-Duffin 2018] [Balitsky,
Kazakov, Sobko, 2013]

e non-local for general spin «

e for a € N null-line integrals over local operators
Should give rise to horizontal trajectories: a(A) = ay < 0. [caron-Huot,

Kologlu, Kravchuk, Meltzer, Simons-Duffin, 2023]
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Chew-Frautschi plot (in free Lorentzian CFT)

Local operators

Shadow operators

Light-ray operators

Horizontal trajectories

[Caron-Huot, Kologlu, Kravchuk, Meltzer, Simons-Duffin, 2023]



Pomeron in (planar) N' = 4 SYM

Trajectory with local operators Os = Tr(ZD>Z) + perm
Cartan charges: (J1, %2, 53|A,S,5) =(2,0,024+ S ++,S5,0)

[Gromov, Levkovich-Maslyuk, Sizov, Valatka, 2014] [Alfimov, Gromov, Kazakov, 2015]




Questions

What do horizontal trajectories really look like in interacting CFT?
What happens in case of degeneracies?

How do they influence the intercept of Regge trajectories?

What is the Odderon trajectory in NV = 4 SYM?

How to find its intercept?

We studied twist-3, Ag — S = 3, [RK, Szecsenyi, Preti, PRL 2024], Where the theory is
more generic.
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Continuation using Quantum Spectral Curve (QSC)

Spectrum of planar N/ =4 SYM (as a function of coupling g) is captured
by QSC:
@ coupled difference equations whose boundary conditions encode the
Cartan charges (J1, J2, J3|A, S, Sy) that label states (cromov, Kazakov, Leurent,
Volin, 2013]
o Ultimately just a machine: input five charges, output the sixth.*

@ In principle flexible and non-perturbative, but working the machine is
very technical

Tr(ZD*Z%)+...

/
st /
-




|
Riemann surface (at g = 1/2)

Branch points:
Im[A]

Re[A]




The three trajectories

The real slice of our Riemann surface (g = 1/10):

We count:

@ the trajectory containing the twist-3 local operators
@ two horizontal trajectories, degenerate at zero coupling

@ More branch points, more mixing (of four trajectories), now with
twist-5 operators
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Discussion

How is the intercept affected?
S(A)= -2+ Ix(A)g" including odd n
n=1

and after a lot of hard work, we extract from QSC that
S5(0)=-2+2g+0 (gz)
It depends linearly on g! First N' = 4 SYM observable with this
behaviour.
Observation: g — —g brings us from one trajectory to another!
= S(A,—g) when |A| <1
Lessons:

@ Observables in N' = 4 can depend on odd powers of g, here caused
by degenerate horizontal trajectories

@ It shows how non-local operators form an important and understudied
part of CFTs
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Appendix



Dynamical R-matriX (reer 004

Quantum Yang-Baxter equation:
Ra3R13R12 = Ri2R13Ra3

V3 V2 V1 V3 V2 Vl

V1 V2 V3 V1 V2 V3



Dynamical R-matriX (reer 004
Quantum Yang-Baxter equation:

Ro3(x2 —x3) Ri3(x1 —x3) Ri2(x1 —x2) = Ri2(x1 —x2) Ri3(x1 — x3) Ro3(x2 — X3)

X3 X2 X1 X3 X2 X1

X1 X2 X3 X1 X2 X3



Dynamical R-matriX (reer 004
Quantum Yang-Baxter equation: with x; = x; — x;

Ro3(x23) Ri3(x13) Ri2(x12) = Ri2(x12) R13(x13) R23(x23)

X3 X2 X1 X3 X2 X1

X1 X2 X3 X1 X2 X3



Dynamical R-matriX (reer 004
Dynamical Yang-Baxter equation:

Ro3(x23; @) Ri3(x13; @ — 05 ) Ri2(x12; a)

Ri2(x12; @ — 03 ) Ri3(x13; @) Roz(xe3; @ — 07)

X3 X2 X1 X3 X2 X1

X1 X2 X3 X1 X2 X3



Dynamical R-matriX (reer 004
Braidlike dynamical Yang-Baxter equation: with /VR’,-J- = PjjR;j

Pa3Ra3(xo3; a) Pr3Riz(x13; @ — 05) PraRia(x12; @)

P1oRio(x12; a — 05)P13Ri3(x13; @) PasRoz(x23; a — 0F)

X3 X2 X1 X3 X2 X1

X1 X2 X3 X1 X2 X3



Dynamical R-matriX (reer 004
Braidlike dynamical Yang-Baxter equation:

fv?lz(X23; a) 'LV?23(X13; a— Uf)fv?u(xlz; 8)

Ros(x12; a — 0%)Ria(x13; a)Ras(x3; @ — 0F)

Vi Vo Vs Vi Vo Vs

X3 X2 X1 X3 X2 X1
a = a

X1 X2 X3 X1 X2 X3

Vi Vs V3 %] Vo V3



Dynamical R-matriX (reer 004

Braidlike dynamical Yang-Baxter equation:

with Pjjy1(x) = F?i,;+1(X; a—of—...—0f,)

P12(x23) P23(x13) P12(x12)

Pa3(x12) P12(x13) P23(x23)

Vi VW Vs Vi Vs
X3 X2 X1 X3 X2
a = a
X1 X2 X3 X1 X2

\/1 \/2 \/3 V1 V2

X1

X3



Dynamical R-matriX (reer 004

Braidlike dynamical Yang-Baxter equation:

v

with Pjit1(x) = Rijiyi(x;a—of —... —07_1)

P12(x23) P23(x13) P12(x12)

Pa3(x12) P12(x13) P23(x23)

o unitarity: Pjjy1(x)Piir1(—x) =1
e commutativity: [Pjit1(x), Pjj+1(y)] =0if [i —j] > 1
Action on spin basis: s; € {1,]}

Piiv1(x)|s1,...,sn) = |s1,...,5Si—1)
® R(x,a— Y4 se) |sis siv1)
& |5I'+15 cee 75N> 3
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A (familiar) starting point
Heisenberg XXX spin chain of N spin-1/2 particles:

N
1
— X X y -y z _z
i=1
i i+1

@ Ubiquitous in physics: from phase transitions of magnetic systems to

anomalous dimensions in N' =4 SYM
e Simple: nearest-neighbour and isotropic (SU(2)-symmetric)
e (quantum) integrable due to extra mathematical structure (Bethe

ansatz) — exactly solvable

Ubiquitous because it is simple
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A (familiar) starting point
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N1
— -~ — P i i+1
> (5 Pun)
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A (familiar) starting point
Heisenberg XXX spin chain of N spin-1/2 particles:

N
1
— X X y .y z_z
HXXX—_§Z(Uiai+1+Ui0i+1+ai0i+l)
i=1
N

~> (1= Pii1) ZE/H-I i+l

i=1
e Ubiquitous in physics: from phase transitions of magnetic systems to

anomalous dimensions in N' = 4 SYM
e Simple: nearest-neighbour and isotropic (SU(2)-symmetric)
e (quantum) integrable due to extra mathematical structure (Bethe

ansatz) — exactly solvable

Ubiquitous because it is simple
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Deforming the starting point

Heisenberg xX7 spin chain of N spin-1/2 particles:
N
Hxxz = Z Ei,i+1(q)
i=1

Deformed spin interaction: Lt
—2E4(q) = oFof + oY o) + %o—fai 1

nearest neighbour, but only partially isotropic (S*-symmetric)
still (quantum) integrable

Its mathematical structure is captured by the quantum group Ug(sl>)

from this one can see that for XXX the structure is the Yangian
Y(ﬁ[g).



Inozemtsev's elliptic spin chain fnozemse, 1900

Most general solution:

sinh? k N .
TZ(@(J—k)+772/w) Eji T

j<k =in/k

Hlno =

1 ’ ( 1 1 ) K2
2)= S+ : - = ~3
0(2) z2 J,%Z (z+jN + kw)? (N + kw)? /é:z sinh? k(z + kN)

defined on IL with lattice periods (N,w = ir/k), where k > 0.
2 = 2¢(w/2) with p(z) = =('(2).
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Elliptic R-matrix

We need elliptic R-matrices: we use Felder's dynamical R-matrix [Feider, 1994):
with x = x’ — x” spectral, 1 anisotropy and a dynamical parameter

1 " ’

v _ g(x;na) f(x,na) _
Rix,2) = f(x,—na) g(x,—na) _'a><

1 X X
)60 o O+ 2) o)
0(a)0(x +n) " ’ 0(a) 0(x + 1)
with 6 the normalised odd Jacobi theta function with quasiperiods —w and

N.
Note: our 6 is periodicized sinh, not sin.

f(x,a) =



The deformed Inozemtsev spin chain, r Lames, 2023

and its right chiral partner looks like

1 i j - N
N
=Y Vo(i—j) x al-
i<j
1 i j N
x Yy
a :E//+1X_ A>< PII+1X_ )
Xy
(x +n) = p(x —n) 1
V, = ~
() o2n) o+ s =)



Properties

@ indeed limits to
e g-Haldane-Shastry ( x — 0 and a — —ic0)
e Inozemtsev (1) — 0 and a — —io0)
e has a nearest-neighbour limit (x — )
e is partially isotropic: {HL/R,SZ} =0.
@ is integrable: it belongs to a hierarchy of commuting hamiltonians
and [H", H*] = 0.
@ is not periodic, but twisted- [HL/R, G} =0

2 . N1
G=a = Ky "Pn_in(1 = N) -+ Pp(—1)
12 = N ]
and Ky = kn(a — of — ... 0f,_;) with diagonal twist k(a) = e"?7".

yields notion of quasi-momentum and deformed magnons.

@ can be constructed for any rank



Nearest-neighbour limit towards XXz

As Kk — 00 )
sinh“ k
2 Vi (X) = 0)x mod N1

so only nearest neighbours survive.

Send k — oo and 1 — 0 keeping xkn = —in¥ fixed

sinh? & = -
K/2 HL/R N HXXZ = ; eII.:I’._,’_l =+ GHe]I:I’2GH 1
with
sin[ry(a—1)] _ sin[ry(a+1)]
. B sin[r7a] sin[r7a]
e'(a) = Csin[ry(a=1)]  sin[r3(a+1)]
sin[r¥a] sin[rya]

and G¥ = lim G built from R =1 — '™ eH,
K— 00
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A tale of two Temperley-Liebs

N—1
_ H H H H—1
Hyxz = § €iit+1 +G el,2G
i=1
@ new, dynamical version of braid-translated XXz spin chain [saleur Martin, 1993]

@ The ¢}';,; form a dynamical Temperley-Lieb (TL) represention, and with G"
this becomes affine TL:

with ey = GHe}f’zGH_1 . &2 =2cos(17)ei, eeirie = €,
~1 2
Ge,-G = €ji_1, EN—1 = G €1...eN—1

On the Haldane-Shastry side (as x — 0 and n = N~)

e—Tri'y _eﬂiw
_efﬂi'y e7ri’y
ii+1

form another TL representation and connect to U,(sl).
What is the algebra of the E; ;;1(x)?



