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Motivation

General idea: Imposing PDEs on compact manifolds often results in topological constraints.

e.g: compact Kähler manifolds admit a Hodge decomposition and satisfy the hard Lefschetz property.

Formality, another topological constraint, is also related to certain PDEs. A property of compact simply

connected formal manifolds, derived from Sullivan’s results, is that their rational homotopy groups are

determined by their rational cohomology algebra.

[DGMS] Deligne, Griffiths, Morgan, Sullivan, (1975):  Compact complex manifolds that satisfy the 𝒅𝒅𝒄-

Lemma are formal. In particular, compact Kähler manifolds are formal. 

Question: Are compact manifolds with special and exceptional holonomy formal?
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Holonomy & Formality

Berger’s Theorem (1955):  Holonomy groups of simply connected, irreducible, compact, non-symmetric 
n-dimensional Riemannian manifolds are:                              
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Formality

[DGMS] implies that compact Kähler, Calabi-Yau and 
hyper-Kähler manifolds are formal.

Amann, Kapovitch (2012) applied [DGMS] to prove that 
quaternion-Kähler manifolds with positive scalar
curvature are formal.



Holonomy & Formality

Berger’s Theorem (1955):  Holonomy groups of simply connected, irreducible, compact, non-symmetric 
n-dimensional Riemannian manifolds are:                              

         
                
 
                    

                 

U(m)           n=2m ℂ

SU(m) n=2m ℂ

Sp(k) n=4k ℍ

Sp(k) Sp(1)                                    n=4k ℍ

SO(n) ℝ

G2 n=7 𝕆

Spin(7) n=8 𝕆

Kähler

Calabi-Yau

hyper-Kähler

quaternionic-Kähler

Formality

[DGMS] implies that compact Kähler, Calabi-Yau and 
hyper-Kähler manifolds are formal.

Amann, Kapovitch (2012) applied [DGMS] to prove that 
quaternion-Kähler manifolds with positive scalar
curvature are formal.

G2 case: Partial results by several authors. For instance,
they are formal if b2 is low (<4).
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Formality

The notion of formality comes from rational homotopy theory, which uses the category of 

commutative differential graded algebras (cDGAs) to encode rational homotopy types.

▪ A cDGA is a commutative graded algebra endowed with a degree-1 differential that satisfies 

the Leibniz rule. Examples are Ω 𝑀 , 𝑑 and (𝐻∗ 𝑀 , 𝑑 = 0).

▪ The notion of equivalence for cDGAs relies on quasi-isomorphisms. These are morphisms of 

cDGAs that induce an isomorphism between their cohomology algebras.                     
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G2 manifolds (1)

▪ Local model:   The standard vector cross product ×: Λ2ℝ7 → ℝ7

determines a 3-form by 𝜑0 𝑢, 𝑣, 𝑤 = 𝑢 × 𝑣, 𝑤 .

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356

 The group G2 ⊂ SO(7) is the stabilizer of φ0, where GL 7 acts on Ω3(ℝ7) by pullback.

▪ There is an embedding 𝐒𝐔(𝟑) ⊂ 𝐆𝟐 when we view ℝ7 = ℝ ⊕ ℂ3 . This is useful for constructing 

examples.
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  ▪ Let (𝑀, 𝑔) be a 7-dimensional oriented Riemannian manifold; a G2 structure is 𝜑 ∈ Ω3(𝑀) whose 
expression in a local orthonormal oriented frame is that of φ0 .

      This induces a cross product on M  by φ(u,v,w)=g(u×v, w).

▪ The obstruction for admitting  a G2 structure is being spin.  
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  ▪ Let (𝑀, 𝑔) be a 7-dimensional oriented Riemannian manifold; a G2 structure is 𝜑 ∈ Ω3(𝑀) whose 
expression in a local orthonormal oriented frame is that of φ0 .

      This induces a cross product on M  by φ(u,v,w)=g(u×v, w).

▪ The obstruction for admitting  a G2 structure is being spin.  

▪ A G2 structure (𝑀, 𝑔, 𝜑) is torsion-free when ∇φ = 0.  
This implies Hol(𝑔)⊂ G2. In this case, if M is compact Hol(𝑔)= G2 if and only if 𝜋1 𝑀 is finite.



G2 manifolds (2)

▪ Some properties of torsion-free G2 manifolds:

▪ They are Ricci-flat.

▪ In the compact case, there are generalisations of the Hodge decomposition and the 
Hard Leftschetz property for the cohomology algebra. Those are ‘weak’ compared
with the topological properties of Kähler manifolds.



G2 manifolds (2)

▪ Compact manifolds with holonomy G2 are difficult to construct. The four available methods
rely on the understanding of Calabi-Yau/hyperkähler manifolds and require difficult analysis:

▪ Joyce (1996): Resolutions of orbifolds 𝑇7/Γ, with Γ ≤ G2 finite.

▪ Kovalev (2003): Twisted connected sum.

▪ Corti, Haskins, Nordström, Pacini (2015): Extension of the twisted connected sum.

▪ Joyce, Karigiannis (2021): Resolution of torsion-free G2  orbifolds of the form 𝑀/ℤ2.

▪ Some properties of torsion-free G2 manifolds:

▪ They are Ricci-flat.

▪ In the compact case, there are generalisations of the Hodge decomposition and the 
Hard Leftschetz property for the cohomology algebra. Those are ‘weak’ compared
with the topological properties of Kähler manifolds.



Main ideas of the construction

▪ The compact non-formal (simply connected) manifold with holonomy 𝐺2 is the resolution M of
an orbifold X=𝑇7/Γ, with Γ = 32.

▪ The orbifold X is formal, but the resolution M is not. 

▪ To prove that M is non-formal, one uses Triple Massey products, which is a partially defined
operation with 3 cohomology classes that obstruct formality (i.e, Triple Massey products vanish
on formal manifolds). 

▪ Each connected component of the exceptional divisor of the resolution yield to a new 
cohomology class. The value of a particular triple Massey product involving those classes
depends on how the different connected components of the singular locus are linked. 

▪ The action of Γ on 𝑇7 was constructed to achieve a non-trivial configuration that yields a non-
zero triple Massey product.
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Thank you!
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