Compact holonomy G₂ manifolds need not be formal

Lucía Martín-Merchán

Humboldt Universität zu Berlin

General idea: Imposing **PDEs** on compact manifolds often results in topological constraints. **e.g**: compact Kähler manifolds admit a Hodge decomposition and satisfy the hard Lefschetz property.

General idea: Imposing **PDEs** on compact manifolds often results in topological constraints. **e.g**: compact Kähler manifolds admit a Hodge decomposition and satisfy the hard Lefschetz property.

Formality, another topological constraint, is also related to certain PDEs. A property of compact simply connected formal manifolds, derived from Sullivan's results, is that their rational homotopy groups are determined by their rational cohomology algebra.

General idea: Imposing **PDEs** on compact manifolds often results in topological constraints. **e.g**: compact Kähler manifolds admit a Hodge decomposition and satisfy the hard Lefschetz property.

Formality, another topological constraint, is also related to certain PDEs. A property of compact simply connected formal manifolds, derived from Sullivan's results, is that their rational homotopy groups are determined by their rational cohomology algebra.

[DGMS] Deligne, Griffiths, Morgan, Sullivan, (1975): Compact complex manifolds that satisfy the *dd^c*-**Lemma** are formal. In particular, compact Kähler manifolds are formal.

General idea: Imposing **PDEs** on compact manifolds often results in topological constraints. **e.g**: compact Kähler manifolds admit a Hodge decomposition and satisfy the hard Lefschetz property.

Formality, another topological constraint, is also related to certain PDEs. A property of compact simply connected formal manifolds, derived from Sullivan's results, is that their rational homotopy groups are determined by their rational cohomology algebra.

[DGMS] Deligne, Griffiths, Morgan, Sullivan, (1975): Compact complex manifolds that satisfy the *dd^c*-**Lemma** are formal. In particular, compact Kähler manifolds are formal.

Folklore Conjecture: Compact manifolds with special and exceptional holonomy are formal.

Berger's Theorem (1955): Holonomy groups of simply connected, irreducible, compact, non-symmetric n-dimensional Riemannian manifolds are:

SO(n)			\mathbb{R}
U(m)	Kähler	n=2m	C
SU(m)	Calabi-Yau	n=2m	C
Sp(k)	hyper-Kähler	n=4k	H
Sp(k) Sp(1)	quaternionic-Kähler	n=4k	H

G ₂	n=7	\mathbb{O}
Spin(7)	n=8	\mathbb{O}

Berger's Theorem (1955): Holonomy groups of simply connected, irreducible, compact, non-symmetric n-dimensional Riemannian manifolds are: **Formality**

SO(n) \mathbb{R} U(m)Kählern=2m \mathbb{C} SU(m)Calabi-Yaun=2m \mathbb{C} Sp(k)hyper-Kählern=4k \mathbb{H} Sp(k) Sp(1)quaternionic-Kählern=4k \mathbb{H}

G ₂	n=7	\mathbb{O}
Spin(7)	n=8	\mathbb{O}

[DGMS] implies that compact Kähler, Calabi-Yau and hyper-Kähler manifolds are formal.

Amann, Kapovitch (2012) applied [DGMS] to prove that quaternion-Kähler manifolds with positive scalar curvature are formal.

Berger's Theorem (1955): Holonomy groups of simply connected, irreducible, compact, non-symmetric n-dimensional Riemannian manifolds are:

Formality

	SO(n)	SO(n)		
U(m)	Kähler	n=2m	C	
SU(m)	Calabi-Yau	n=2m	C	
Sp(k)	hyper-Kähler	n=4k	H	
Sp(k) Sp(1)	quaternionic-Kähler	n=4k	H	

G ₂	n=7	\mathbb{O}	
Spin(7)	n=8	\mathbb{O}	

[DGMS] implies that compact Kähler, Calabi-Yau and hyper-Kähler manifolds are formal.

Amann, Kapovitch (2012) applied [DGMS] to prove that quaternion-Kähler manifolds with positive scalar curvature are formal.

 G_2 case: Partial results by several authors. For instance, they are formal if b_2 is low (<4).

LMM (2024): Compact manifolds with holonomy G₂ need not be formal.

Berger's Theorem (1955): Holonomy groups of simply connected, irreducible, compact, non-symmetric n-dimensional Riemannian manifolds are:

Formality

	SO(n)	SO(n)		
U(m)	Kähler	n=2m	C	
SU(m)	Calabi-Yau	n=2m	C	
Sp(k)	hyper-Kähler	n=4k	H	
Sp(k) Sp(1)	quaternionic-Kähler	n=4k	H	

G ₂		n=7	\square	
Spin(7)	?	n=8	\mathbb{O}	

[DGMS] implies that compact Kähler, Calabi-Yau and hyper-Kähler manifolds are formal.

Amann, Kapovitch (2012) applied [DGMS] to prove that quaternion-Kähler manifolds with positive scalar curvature are formal.

 G_2 case: Partial results by several authors. For instance, they are formal if b_2 is low (<4).

LMM (2024): Compact manifolds with holonomy G₂ need not be formal.

The notion of formality comes from **rational homotopy theory**, which uses the category of **commutative differential graded algebras (cDGAs)** to encode rational homotopy types.

• A **cDGA** is a commutative graded algebra endowed with a degree-1 differential that satisfies the Leibniz rule. **Examples** are $(\Omega(M), d)$ and $(H^*(M), d = 0)$.

The notion of formality comes from **rational homotopy theory**, which uses the category of **commutative differential graded algebras (cDGAs)** to encode rational homotopy types.

- A **cDGA** is a commutative graded algebra endowed with a degree-1 differential that satisfies the Leibniz rule. **Examples** are $(\Omega(M), d)$ and $(H^*(M), d = 0)$.
- The notion of equivalence for cDGAs relies on quasi-isomorphisms. These are morphisms of cDGAs that induce an isomorphism between their cohomology algebras.

The notion of formality comes from **rational homotopy theory**, which uses the category of **commutative differential graded algebras (cDGAs)** to encode rational homotopy types.

- A **cDGA** is a commutative graded algebra endowed with a degree-1 differential that satisfies the Leibniz rule. **Examples** are $(\Omega(M), d)$ and $(H^*(M), d = 0)$.
- The notion of equivalence for cDGAs relies on quasi-isomorphisms. These are morphisms of cDGAs that induce an isomorphism between their cohomology algebras.

A manifold is **formal** if we can connect $(\Omega(M), d)$ and $(H^*(M), d = 0)$ through a chain of cDGAs (A_j, d_j) and quasi-isomorphisms of the following form:

The notion of formality comes from **rational homotopy theory**, which uses the category of **commutative differential graded algebras (cDGAs)** to encode rational homotopy types.

- A **cDGA** is a commutative graded algebra endowed with a degree-1 differential that satisfies the Leibniz rule. **Examples** are $(\Omega(M), d)$ and $(H^*(M), d = 0)$.
- The notion of equivalence for cDGAs relies on quasi-isomorphisms. These are morphisms of cDGAs that induce an isomorphism between their cohomology algebras.

A manifold is **formal** if we can connect $(\Omega(M), d)$ and $(H^*(M), d = 0)$ through a chain of cDGAs (A_j, d_j) and quasi-isomorphisms of the following form:

Sullivan's foundational results imply, in particular, that if a simply connected compact manifold is formal, $\pi_n(X) \otimes \mathbb{Q}$ can be calculated from $H^*(M, \mathbb{Q})$

• Local model: The standard vector cross product $\times: \Lambda^2 \mathbb{R}^7 \to \mathbb{R}^7$ determines a 3-form by $\varphi_0(u, v, w) = \langle u \times v, w \rangle$. $\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$

• Local model: The standard vector cross product $\times: \Lambda^2 \mathbb{R}^7 \to \mathbb{R}^7$ determines a 3-form by $\varphi_0(u, v, w) = \langle u \times v, w \rangle$. $\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$

The group $G_2 \subset SO(7)$ is the stabilizer of φ_0 , where GL(7) acts on $\Omega^3(\mathbb{R}^7)$ by pullback.

• There is an embedding $SU(3) \subset G_2$ when we view $\mathbb{R}^7 = \mathbb{R} \bigoplus \mathbb{C}^3$. This is useful for constructing examples.

• Local model: The standard vector cross product $\times: \Lambda^2 \mathbb{R}^7 \to \mathbb{R}^7$ determines a 3-form by $\varphi_0(u, v, w) = \langle u \times v, w \rangle$. $\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$

- There is an embedding $SU(3) \subset G_2$ when we view $\mathbb{R}^7 = \mathbb{R} \bigoplus \mathbb{C}^3$. This is useful for constructing examples.
- Let (M, g) be a 7-dimensional oriented Riemannian manifold; **a** G_2 structure is $\varphi \in \Omega^3(M)$ whose expression in a local orthonormal oriented frame is that of φ_0 . This induces a cross product on M by $\varphi(u,v,w)=g(u \times v, w)$.

• Local model: The standard vector cross product $\times: \Lambda^2 \mathbb{R}^7 \to \mathbb{R}^7$ determines a 3-form by $\varphi_0(u, v, w) = \langle u \times v, w \rangle$. $\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$

- There is an embedding $SU(3) \subset G_2$ when we view $\mathbb{R}^7 = \mathbb{R} \bigoplus \mathbb{C}^3$. This is useful for constructing examples.
- Let (M, g) be a 7-dimensional oriented Riemannian manifold; **a** G_2 structure is $\varphi \in \Omega^3(M)$ whose expression in a local orthonormal oriented frame is that of φ_0 . This induces a cross product on M by $\varphi(u,v,w)=g(u \times v, w)$.
- The obstruction for admitting a G₂ structure is being spin.

• Local model: The standard vector cross product $\times: \Lambda^2 \mathbb{R}^7 \to \mathbb{R}^7$ determines a 3-form by $\varphi_0(u, v, w) = \langle u \times v, w \rangle$. $\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$

- There is an embedding $SU(3) \subset G_2$ when we view $\mathbb{R}^7 = \mathbb{R} \bigoplus \mathbb{C}^3$. This is useful for constructing examples.
- Let (M, g) be a 7-dimensional oriented Riemannian manifold; **a** G_2 structure is $\varphi \in \Omega^3(M)$ whose expression in a local orthonormal oriented frame is that of φ_0 . This induces a cross product on M by $\varphi(u,v,w)=g(u \times v, w)$.
- The obstruction for admitting a G₂ structure is being spin.
- A G_2 structure (M, g, φ) is torsion-free when $\nabla \varphi = 0$. This implies $Hol(g) \subset G_2$. In this case, if M is compact $Hol(g) = G_2$ if and only if $\pi_1(M)$ is finite.

- Some properties of torsion-free G₂ manifolds:
 - They are Ricci-flat.
 - In the compact case, there are generalisations of the Hodge decomposition and the Hard Leftschetz property for the cohomology algebra. Those are 'weak' compared with the topological properties of Kähler manifolds.

- Some properties of torsion-free G₂ manifolds:
 - They are Ricci-flat.
 - In the compact case, there are generalisations of the Hodge decomposition and the Hard Leftschetz property for the cohomology algebra. Those are 'weak' compared with the topological properties of Kähler manifolds.
- Compact manifolds with holonomy G₂ are difficult to construct. The four available methods rely on the understanding of Calabi-Yau/hyperkähler manifolds and require difficult analysis:
 - **Joyce (1996)**: Resolutions of orbifolds T^7/Γ , with $\Gamma \leq G_2$ finite.
 - Kovalev (2003): Twisted connected sum.
 - Corti, Haskins, Nordström, Pacini (2015): Extension of the twisted connected sum.
 - Joyce, Karigiannis (2021): Resolution of torsion-free G_2 orbifolds of the form M/\mathbb{Z}_2 .

• The compact non-formal (simply connected) manifold with holonomy G_2 is the **resolution** M of an orbifold $X=T^7/\Gamma$, with $|\Gamma| = 32$.

- The compact non-formal (simply connected) manifold with holonomy G_2 is the **resolution** M of an orbifold $X=T^7/\Gamma$, with $|\Gamma| = 32$.
- The orbifold X is formal, but the resolution M is not.

- The compact non-formal (simply connected) manifold with holonomy G_2 is the **resolution** M of an orbifold $X=T^7/\Gamma$, with $|\Gamma| = 32$.
- The orbifold X is formal, but the resolution M is not.
- To prove that M is non-formal, one uses Triple Massey products, which is a partially defined operation with 3 cohomology classes that obstruct formality (i.e, Triple Massey products vanish on formal manifolds).

- The compact non-formal (simply connected) manifold with holonomy G_2 is the **resolution** M of an orbifold $X=T^7/\Gamma$, with $|\Gamma| = 32$.
- The orbifold X is formal, but the resolution M is not.
- To prove that M is non-formal, one uses Triple Massey products, which is a partially defined operation with 3 cohomology classes that obstruct formality (i.e, Triple Massey products vanish on formal manifolds).
- Each connected component of the exceptional divisor of the resolution yield to a new cohomology class. The value of a particular triple Massey product involving those classes depends on how the different connected components of the singular locus are linked.

- The compact non-formal (simply connected) manifold with holonomy G_2 is the **resolution** M of an orbifold $X=T^7/\Gamma$, with $|\Gamma| = 32$.
- The orbifold X is formal, but the resolution M is not.
- To prove that M is non-formal, one uses Triple Massey products, which is a partially defined operation with 3 cohomology classes that obstruct formality (i.e, Triple Massey products vanish on formal manifolds).
- Each connected component of the exceptional divisor of the resolution yield to a new cohomology class. The value of a particular triple Massey product involving those classes depends on how the different connected components of the singular locus are linked.
- The action of Γ on T⁷ was constructed to achieve a non-trivial configuration that yields a non-zero triple Massey product.

Thank you!