

Higgs and Fundamental Interactions at High Precision

Results with DESY scientists' leading contributions

Ami Rostomyan Hamburg, 02.12.2024

Stringent test of the standard model

Has been tested by many experiments since its formulation

Perform measurements across a broad range of observables and compare them to SM predictions.

The intensity frontier

- High-flux beams colliding at low energies
- Uncover new particles indirectly
 - E.g. could alter the lepton flavour universality

The energy frontier

- Particle beams colliding at high energies
- Direct production of new particles
 - E.g. is the Higgs boson at 125 GeV the SM Higgs?

Significant deviations from the SM predictions can indicate the presence of physics beyond the SM.

ATLAS, CMS and Belle II

Main players at DESY

Rich harvest of data:

- LHC delivered 140 fb^{-1} at Run2, and already 196 fb^{-1} in Run3
- Belle II collected same amount of data as the first generation B-factories

Key contributions to operations and calibration.

Examples:

- Alignment of CMS and Belle II detectors with Millipede II (program developed by UHH and DESY scientists)
- Unprecedented precision of luminosity measurement (ATLAS 0.83% full Run 2, CMS 1.2% in 2016)
- Neutral and charged particle reconstructions at Belle II (DESY scientists holding leading positions)

Higgs boson couplings to bosons and fermions

ATLAS: Nature 607 52 (2022) CMS: Nature 607 60 (2022)

Only interaction that distinguishes the generations of fermions

Kunlin Ran, Tina Ojeda, Birgit Stapf, Petar Bokan

Detailed portrait of the Higgs boson from ATLAS and CMS 10 years after its discovery

- Statistical combination of a large range of measurements of different Higgs boson production and decay channels using LHC Run 2 data
- The measurements are interpreted in the κ -framework
 - κ is multiplicative modifier of SM Higgs coupling

Couplings to the Higgs boson scale with the particle mass

 Precision of 6-8% on couplings to bosons and 7-12% on couplings to third-generation fermions

Characterising the Higgs boson production

ATLAS: arXiv:2407.10904 CMS: EPJ C83 (2023) 562

STXS: arXiv:1906.02754

Studying the kinematics for individual production processes

ATLAS: $t\bar{t}H(\rightarrow b\bar{b})$:

Most precise single-channel inclusive and differential

cross section

Best sensitivity to the high p_T region, particularly sensitive to BSM physics

CMS $ggH, qqH, VH(H \rightarrow \tau^+\tau^-)$:

Exploit NN event selection, enhancing the precision of differential results

The measured differential cross sections span several orders of magnitude, probing the BSM physics in a wide range.

Higgs total and differential cross sections

ATLAS: JHEP 05 (2023) 028 EPJ. C 84 (2024) 78 Theory: PRL 127 (2021) 7

Excellent resolution channels H→γγ and H→ZZ*→4I

Unprecedented precision of 7%, comparable to that of the SM (5%). $\sigma_{pp\to H} = 55.5^{+4.0}_{-3.8} \text{ pb} \quad \sigma^{\text{SM}}_{pp\to H} = 55.6 \pm 2.5 \text{ pb}$ _{13 TeV}

The differential cross-section affected by the modifications of the coupling strength to b- and c-quarks

 $\kappa_c \in [-2.27, 2.27]$ at 95% CL using DESY gluon fusion theory predictions

First N³LL' +N³LO theory calculation for total and differential cross section in gluon fusion, including also fiducial region for $H\rightarrow\gamma\gamma$

Highest order prediction achieved at a hadron collider

The CP properties of Higgs boson

First measurement of the CP structure of the Higgs coupling to τ leptons

Exploit the angular correlations between decay planes of the τ leptons

a phase shift between different mixing scenarios

The pure CP-odd state is disfavoured at 3 s. d.

Constraints on the ratio of the CP-odd and the CP-even components

Global analysis of the CP structure - joint activity theory/experiment:

• Combine $H\tau\tau$ coupling and CP measurements, with constraints from electron dipole moment measurements

Current limits of CP violation in $H \to \tau \tau$ is sufficient to explain the baryon asymmetry in the universe

Higgs self coupling

Important for the understanding of the evolution of the universe

The most sensitive test of Higgs boson self-interaction from di-Higgs production

 Direct probe of trilinear self-coupling and quartic coupling between two Higgs bosons and two vector bosons

Data constrains:
$$-1.2 < \kappa_{\lambda} < 7.2 \ \ \text{and} \ \ 0.57 < \kappa_{2V} < 1.48$$

Probe the extensions of the SM

Example: the two Higgs doublets model in so far unconstrained parameter regions

ATLAS: PRL 133, 101801 (2024) Theory: PRL 129, 231802 (2022)

95% CL upper limit on HH signal strength μ_{HH}

Effective electroweak mixing angle $\sin^2\theta_{\rm eff}$

Drives the strength of the neutral component of the weak interaction.

 $\sin^2\theta_{\rm eff}$ is measured from the forward-backward asymmetry of μ^+ or e^+ ($q\bar q\to Z/\gamma\to\ell^+\ell^-$) with respect to the direction of Z boson motion

$$A_{FB} = (N_F - N_B)/(N_F + N_B)$$

• Unfolded as an angular coefficient $A_{\!\scriptscriptstyle A}$

Most precise measurement at hadron colliders: $\sin^2\theta_{\rm eff}^\ell = 0.23157 \pm 0.00010(stat) \pm 0.00015(exp) \pm 0.00009(theo) \pm 0.00027(PDF)$

Result in perfect agreement with SM prediction

Drives the strength of the charged component of the weak interaction

 $W \rightarrow \mu \nu$:

- m_W is directly sensitive to p_T distribution of the muon but strongly dependent on the theoretical modelling
- State-of-the-art theory predictions at N3LL+NNLO with novel "theory nuisance parameters" approach developed by DESY theory group

Most precise measurement at the LHC: $m_W = 80360.2 \pm 9.9 \text{ MeV}$

- Agreement with the expectation from the SM
- Precision approaching the one of the Z boson mass

LEP combination
Phys. Rep. 532 (2013) 119
D0
PRL 108 (2012) 151804
CDF
Science 376 (2022) 6589
LHCb
JHEP 01 (2022) 036
ATLAS
arxiv:2403.15085, subm. to EPJC
CMS
This Work

T-lepton mass measurement

Fundamental parameter of SM

The tau lepton mass is known with the least precision compared to other leptons.

• Exploit the sharp threshold behaviour in the region close to the nominal value of the τ mass

World's most precise measurement to date $m_{\tau} = 1777.09 \pm 0.14 \; \mathrm{MeV/c^2}$

Slightly higher world average value including Belle II recent measurement

Important input to lepton-flavour-universality tests

- The relation between $B'(\tau \to e \nu \bar{\nu})$ and the lifetime τ_{τ} very sensitive to the value of the τ mass
- Slight tension decreased further

 $B'(\tau \to e \nu \bar{\nu})$ represents the average of $\mathcal{B}(\tau \to e \nu \bar{\nu})$ and the value predicted from $\mathcal{B}(\tau \to \mu \nu \bar{\nu})$ assuming lepton universality

Test of lepton flavour universality in τ decays

The coupling of leptons to W bosons is flavour-independent

Test of $\mu-e$ universality by measuring g_{μ}/g_{e}

BSM physics could enter in a variety of ways

Measured from the leptonic branching fraction ratio

$$R_{\mu} = \frac{B(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{B(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \stackrel{\text{SM}}{=} 0.9726 \qquad \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto R_{\mu} \times \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \stackrel{\text{SM}}{=} 1$$

Most precise test of $\mu-e$ universality in τ decays from a single measurement

Consistent with SM expectation at the level of 1.4σ

Long-standing " V_{ub} -puzzle"

Important probe of the CKM matrix elements

Belle: PRL 131, 211801 (2023)

Constraint on unitarity triangle from V_{ub} measurements

- Discrepancy between exclusive and inclusive determinations with 3.7 standard deviations from unity
 - Exclusive: $B \to \pi \ell \nu$, $B \to \rho \ell \nu$, etc
 - Inclusive: $B \to X_{\mu} \ell \nu$

First simultaneous determination of inclusive & exclusive $|V_{ub}|$ $V_{ub}^{\rm excl}/V_{ub}^{\rm incl}=0.97\pm0.12$ compatible with SM

$$|V_{ub}^{\rm excl}| = (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3}$$

$$|V_{ub}^{\text{incl}}| = (3.88 \pm 0.20 \pm 0.31 \pm 0.09) \times 10^{-3}$$

Top physics

Selected highlights of a huge program

Cross section of top-quark pair production

Provide important checks of perturbative QCD

The inclusive $t\bar{t}$ production cross section scale with the centre-of-mass energy as expected

Production of four top quarks

 Constrain the top quark Yukawa coupling, CP-related parameters, and effective field theory operators

Achieved a significance of 4.0 standard deviations

The strong coupling constant α_s

ATLAS: EPJ C 84 (2024) 315

arXiv:2309.12986

CMS: JHEP 02 (2022) 142

The least precisely determined coupling among the fundamental couplings in nature

New experimental methodology to extract DY cross section

- First $p_T(Z)$ cross section measured in full-lepton phase space
 - % level precision in the central region, sub-% uncertainties up to |y| < 3.6
 - exceptional possibilities for phenomenological interpretations

0.115

0.120

0.125

0.130 $\alpha_s(m_{\bar{j}})$

Outlook

Very interesting times ahead!

- DESY groups of ATLAS, CMS and Belle II lead a variety of analysis from very high precision measurements to first observations of rare standard model processes
- Close collaboration with theory groups ensures accurate comparisons with standard model predictions and provides guidance for interpreting results
 - The standard model holds up to tests, but theoretical and experimental uncertainties still leave room for potential physics beyond the standard model

Goal for the next decade: enhance the precision further!

Thank you

Contact

Deutsches Elektronen- Ami Rostomyan

Synchrotron DESY Belle II

armine.rostomyan@desy.de

www.desy.de +49 40 8998 3445