

Introduction

A decade after the discovery of the Higgs boson

- No other new particles found despite many open questions:
 - Nature of dark matter
 - Abundance of anti-matter
 - Neutrinos masses
 - Three particle families with very different masses
 - Higgs boson mass very light compared to the Plack scale
 - Gravity
- Extension of the Standard Model needed!

2 Higgs doublet models

Additional Higgs doublet → 5 physical Higgs bosons

2HDMs could:

- Explain matter-antimatter
 asymmetry through
 baryogenesis (adding CP
 violation in the scalar sector)
- Can accommodate a strong firstorder electroweak phase transition

Required by SUSY (MSSM)

JHEP 07 (2023) 073

Extended Higgs Sector

Highlight: Search in ττ channel

Additional Higgs doublet → 5 physical Higgs bosons 2HDMs could:

- Explain matter-antimatter asymmetry through baryogenesis (adding CP violation in the scalar sector)
- Can accommodate a strong firstorder electroweak phase transition

Required by SUSY (MSSM)

Excess with global (local) p-value of 2.7 σ (3.1 σ) at 100 GeV, coinciding with a similar excess in the $\gamma\gamma$ final state at 95 GeV

Highlight: Theory study

Additional Higgs doublet → 5 physical Higgs bosons 2HDMs could:

- Explain matter-antimatter
 asymmetry through
 baryogenesis (adding CP
 violation in the scalar sector)
- Can accommodate a strong first-order electroweak phase transition

Required by SUSY (MSSM)

Analyis of the thermal history of the 2HDM: Determine the parameter regions featuring strong first-order electroweak phase transition (EWPT)

- → Can produce a primordial gravitational wave
- → Potentially detectable at LISA
- → Enhance trilinear Higgs self-coupling

JHEP 08 (2024) 013

Extended Higgs Sector

Highlight : Search in $t\bar{t}$ **channel**

Difficult analysis because of interference with SM $t\bar{t}$ production

→ need to search for peak-dip structure

Highlight: Search in $t\bar{t}$ **channel**

Difficult analysis because of interference with SM $t\bar{t}$ production

→ need to search for peak-dip structure

Exclude large parameter range for small $\tan \beta$

JHEP 08 (2024) 01

Highlight: Search in $t\bar{t}$ **channel**

Extend search in $t\bar{t}$ channel to lower di-top masses

3D search using 2 spin observables and m_{ff}

- ightharpoonup Deviations observed in close to the $t\bar{t}$ production threshold
- Not yet well understood region (non-relativistic QCD)
 - → strong exchange with theorists

Highlight: Search in $t\bar{t}$ **channel**

3D search using 2 spin observables and m_{ff}

- ightharpoonup Deviations observed in close to the $t\bar{t}$ production threshold
- Not yet well understood region (non-relativistic QCD)
 - → strong exchange with theorists

Extend search in $t\bar{t}$ channel to lower di-top masses

- fits well to data in threshold region
- cannot be separated from pseudoscalar toponium

Caution: Yet a simplified model!

$$\sigma(\eta_t) = 7.1 \pm 0.8 \, \mathrm{pb}$$

NRQCD:
$$\sigma\left(\eta_t
ight)^{\mathrm{pred}} = 6.43\,\mathrm{pb}$$

CMS-PAS-HIG-22-013

Highlight: Search in $t\bar{t}$ **channel**

Supersymmetry

An additional space-time symmetry: new partner particles with spin differing by 1/2

Supersymmetry could explain:

- Dark matter (DM = lightest SUSY particle)
- Neutrino masses

Implications for theory:

- ➤ Hierarchy problem
- Unification of forces possible
- Gravity can be included

However, not yet observed:

- ➤ Broken symmetry
 - → expect partner particles with higher masses

Supersymmetry

Strong contributions to many SUSY searches, excluding strong-coupling partners in the TeV range

Supersymmetry could explain:

- Dark matter (DM = lightest SUSY particle)
- Neutrino masses

Implications for theory:

- > Hierarchy problem
- Unification of forces possible
- Gravity can be included

However, not yet observed:

- ➤ Broken symmetry
 - → expect partner particles with higher masses

Supersymmetry

Reinterpretation in other (more generic) models

Heavy neutral leptons

Neutrino oscillations are BSM → require small neutrino mass

Heavy sterile neutrinos could explain:

- Neutrino masses
- Baryon asymmetry of the universe (through leptogenesis)
- > Dark matter (warm DM)

Cosmological impact on:

- ➤ Big bang nucleosynthesis
- Cosmic microwave background

Heavy neutral leptons

Highlight: Search in the phenomenological type-I seesaw model

Heavy sterile neutrinos could explain:

- Neutrino masses
- Baryon asymmetry of the universe (through leptogenesis)
- > Dark matter (warm DM)

Cosmological impact on:

- ➤ Big bang nucleosynthesis
- Cosmic microwave background

Search for right-handed sterile neutrinos N with

- ➤ a large SM gauge-invariant Majorana mass
- coupled via Yukawa interactions to the lefthanded active neutrinos

 W^+

 W^+

Heavy neutral leptons

Highlight: Search in the phenomenological type-I seesaw model

Heavy sterile neutrinos could explain:

- Neutrino masses
- Baryon asymmetry of the universe (through leptogenesis)
- ➤ Dark matter (warm DM)

Cosmological impact on:

- ➤ Big bang nucleosynthesis
- Cosmic microwave background

Search fpr right-handed sterile neutrinos N with

- ➤ a large SM gauge-invariant Majorana mass
- coupled via Yukawa interactions to the lefthanded active neutrinos

- Strong bounds on $|\mathbf{v}_{\mathsf{IN}}|$ (matrix element describing the mixing of the mass eigenstate of N with the SM ν_e or ν_μ)
- Extend phase space to higher masses

Long-lived particles

Extending to long-lived signatures

- Expected in many BSM scenarios (not only HNL)
- Might escape standard reconstruction!

Long-lived particles

Extending to long-lived signatures

- Expected in many BSM scenarios
- Might escape standard reconstruction!

Highlight: Search for events with **displaced collimated SM fermions** reconstructed in the calorimeter or muon spectrometer

→ Development of **special reconstruction** for dark photon jets

Exclude long-lived dark photons with 0.4 GeV < $m_{\gamma d}$ < 2 GeV for Higgs BR of Q(1%) and 10 mm < $c\tau$ < 250 mm

Search for the rare decay $B^{\pm} \rightarrow K^{\pm}\nu\nu$

Looking for enhanced branching ratio

Prohibited at tree level in the SM

- known with high accuracy in the SM: $(5.6 \pm 0.4) \times 10^{-6}$
- Unique for Belle II

Significant enhancements from new physics

- New invisible particles in final state
- New mediators in the loop
- Common explanations of R(D^(*)), muon g-2 anomaly

PRD 109 (2024) 112006

First evidence for the rare decay $B^{\pm} \rightarrow K^{\pm}\nu\nu$

Branching ratio 2.7_° higher than expected by SM

Prohibited at tree level in the SM

- known with high accuracy in the SM: $(5.6 \pm 0.4) \times 10^{-6}$
- Unique for Belle II

Significant enhancements from new physics

- New invisible particles in final state
- New mediators in the loop
- Common explanations of R(D^(*)), muon g-2 anomaly

Result of combination of two independent analyses:

$$\mu = 4.6 \pm 1.0 \text{ (stat)} \pm 0.9 \text{ (syst)}$$

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5 \text{ (stat)}_{-0.4}^{+0.5} \text{ (syst)}] \times 10^{-5}$

 \triangleright 3.5 σ significance wrt the background-only hypothesis

First evidence

2024 (2024) 62

Search for τ→μμμ

Most stringent limit to date

- Neutrino oscillations: first sign of lepton flavor violation
- How about charged leptons?
- Immeasurable small rate in standard model
- Enhancement possible through new particles

Search at Belle II with 424 fb-1

- μ identification is the most powerful discriminating variable
- ➤ Observed limit on branching ratio: 1.9 × 10⁻⁸ at 90% C.L.

SMEFT

Searching for signs of resonances that are too heavy to be produced at the LHC

Model independent framework

- Assumes new-physics states are heavy
- Write effective Lagrangian with only light (SM) particles
- BSM effects can be incorporated as a momentum expansion
- Intensively studied by theory
- Interpretation also by LHC analyses

dimension-6 dimension-8
$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2}\,\mathcal{O}_i^{d=6} + \sum \frac{c_i}{\Lambda^4}\,\mathcal{O}_i^{d=8} + \ldots$$
 BSM effects SM particles

SMEFT

Searching for signs of resonances that are too heavy to be produced at the LHC

- > Assumes new-physics states are heavy
- Write effective Lagrangian with only light (SM) particles
- > BSM effects can be incorporated as a momentum expansion
- Intensively studied by theory
- Interpretation also by LHC analyses

Model independent framework Highlight: Probing t-Z couplings with EFT

- t-Z coupling modified by various BSM scenarios
- Novel approach: constrain several t-Z EFT operators in a simultaneous analysis of ttZ, tWZ, & tZq events:
 - Consider up to 5 EFT operators simultaneously
 - Pioneer use of Deep Learning techniques to target EFT effects

SMEFT

Searching for signs of resonances that are too heavy to be produced at the LHC

- > Assumes new-physics states are heavy
- Write effective Lagrangian with only light (SM) particles
- > BSM effects can be incorporated as a momentum expansion
- Intensively studied by theory
- Interpretation also by LHC analyses

Model independent framework Highlight: Probing t-Z couplings with EFT

- t-Z coupling modified by various BSM scenarios
- Novel approach: constrain several t-Z EFT operators in a simultaneous analysis of ttZ, tWZ, & tZq events:
 - Consider up to 5 EFT operators simultaneously
 - Pioneer use of Deep Learning techniques to target EFT

Summary

Many searches done, important contributions from theory

- > ATLAS, CMS and Belle II have been performing a diverse set of searches
- Theory provides important guidelines and frameworks, e.g. SMEFT
- Trying to turn all stones, so far only a few exciting excesses
- More data to be analyzed, stay tuned!

Thank you

2 Higgs doublet model: Search in $t\bar{t}$ channel

Additional Higgs doublet → 5 physical Higgs bosons 2HDMs could:

- Explain fermion masses and mixings by different couplings to the different bosons
- Explain matter-antimatter asymmetry through baryogenesis (adding CP violation in the scalar sector)
- Accommodate a strong firstorder electroweak phase transition

2HDM are a natural extension in SUSY (MSSM)

Data prefer pseudoscalar over scalar hypothesis

HIG-22-013

2 Higgs doublet model: Search in $t\bar{t}$ channel

Additional Higgs doublet → 5 physical Higgs bosons 2HDMs could:

- Explain fermion masses and mixings by different couplings to the different bosons
- Explain matter-antimatter
 asymmetry through
 baryogenesis (adding CP
 violation in the scalar sector)
- Accommodate a strong firstorder electroweak phase transition

2HDM are a natural extension in SUSY (MSSM)

Highlight: Extended search in $t\bar{t}$ channel to lower di-top masses by CMS: 3D search using 2 spin observables and m_{tt}

Simplified pseudoscalar bound state model:

- fits well to data well in threshold region
- cannot be separated from pseudoscalar toponium

Caution: Yet a simplified model!

$$\sigma(\eta_t) = 7.1 \pm 0.8 \,\mathrm{pb}$$

NRQCD:
$$\sigma\left(\eta_t\right)^{\mathrm{pred}} = 6.43\,\mathrm{pb}^{\mathrm{PR}}_{03}$$

HIG-22-013

Heavy Z'

- [85] ATLAS Collaboration, Search for top-philic heavy resonances in pp collisions at √s = 13 T eV with the ATLAS detector. Eur. Phys. J. C 84, no. 2, 157 (2024). doi: 10.1140/epjc.a10052-023-12318-9
- [86] ATLAS Collaboration,
 Search for heavy resonances
 decaying into a pair of Z bosons
 in the ℓ+ℓ-ℓ'+ℓ'- and ℓ+ℓ-v̄v final
 states using 139 fb-1 of proton—
 proton collisions at √s = 13 TeV
 with the ATLAS detector. Eur.
 Phys. J.C 81, no. 4, 332 (2021).

- 87 ATLAS Collaboration, Search for dark matter produced in association with a Standard Model Higgs boson
- decaying into b-quarks using the full Run 2 dataset from the ATLAS detector, JHEP 11 (2021) 209. doi:
- 10.1007/JHEP11(2021)209

doi: 10.1140/epic.s10052-021-HELMHOLTZ | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Long-lived particles

Extending to long-lived signatures

- Expected in many BSM scenarios, also at Belle II
- Might escape standard reconstruction because of:
 - Displaced vertices
 - Disappearing tracks
 - Emerging jets
 - Displaced photons
 - > Out-of-time decays

Highlight: Search for long-lived spin-0 particles S in B-meson decays mediated by a $b \rightarrow s$ quark transition

Model-independent upper limits on

$$B(B^0 \to K^*(892)^0 (\to K^+\pi^-)S) \times B(S \to x^+x^-)$$
 and

 $B(B^+ \rightarrow K^+S) \times B(S \rightarrow x^+x^-)$, with $(x = e, \mu, \pi, K)$

Heading

Subheading, optional

Heading Copy

- Copy derferecus mint esequiam corepelenet aute dolesti aerorio minctotat
- Erum volum quibeaque ea voleste mporibeat aut eos esequi tor aturem
- Uatus alis velluptatem nihit pe ne susa am aut aut volorep eressi dolupta nonet
- Nimintis et, iderum eture, que natur resecto volorepudae laborum
- Onestia voluptae vendant pos quatet bea dolorrum endam quas sum aut

Heading Copy

- Copy derferecus mint esequiam corepelenet aute dolesti aerorio minctotat
- Erum volum quibeaque ea voleste mporibeat aut eos esequi tor aturem
- Uatus alis velluptatem nihit pe ne susa am aut aut volorep eressi dolupta nonet
- Nimintis et, iderum eture, que natur resecto volorepudae laborum
- Onestia voluptae vendant pos quatet bea dolorrum endam quas sum aut

Contact

Deutsches Elektronen-

Synchrotron DESY

Department

Name Surname

. E-mail

www.desy.de

Phone