

Upgrade and construction projects at DESY

FH division

Sergio Díez Cornell DESY, 13-14 February 2025

Introduction

Leading the effort in instrumentation

DESY keeping his commitment driving collider physics

- Contributing to the major international collaborations as one of the main players
 - Full exploitation of ATLAS, CMS and Belle II experiments
 - Crucial in the most ambitious upgrade projects within the detectors: trackers and HGCAL (endcap calorimeter)
- Maintaining the leading role of DESY in particle physics instrumentation
 - In-house experience and competence in construction of detector systems
 - Strong, multidisciplinary engineering teams
 - State-of-the-art facilities

DESY mission

Commitment and collaboration

- DESY established itself as a hub for German universities and institutions
 - Well regarded as the focal point of systems integration and commissioning
 - Detector Assembly Facility (DAF)
 - Test beam facilities
- Involvement from DESY at all levels: engineers, technicians, students, post-docs, scientists, FH, ZE, FE, ZM, MKS,...

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity $(7.5x10^{34} \text{ cm}^{-2}\text{s}^{-1})$ and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity $(7.5x10^{34} \text{ cm}^{-2}\text{s}^{-1})$ and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

High granularity

High speed

Radiation tolerant

ATLAS-PHYS-PUB-2024-016 8 ATLAS Preliminary $\sqrt{s} = 14 \text{ TeV}$ $HH \to b\bar{b}\tau^+\tau^-$ Run 2 legacy projection Assuming SM ASSUMING SM Run 2 syst. unc. 5 4 3 2

3000

Integrated Luminosity [fb⁻¹]

The HL- LHC Upgrade

Exploring the limits of the World's biggest collider

- Main measurement: measurement at 4sigma (or better) of the Higgs self-coupling mechanism, by combining ATLAS and CMS
- Main challenges: 5-7x higher instantaneous luminosity (7.5x10³⁴ cm⁻²s⁻¹) and 10x more pile-up events (μ = 200) in the detectors
- Main design goal: Maintain or improve resolution and particle identification performance of current detectors

ATLAS-PHYS-PUB-2024-016 8 ATLAS Preliminary $\sqrt{s} = 14 \text{ TeV}$ $HH \rightarrow b\bar{b}\tau^+\tau^-$ Run 2 legacy projection Assuming SM Run 2 syst. unc. 5 4 3 2 1000 1500 2000 2500 3000 Integrated Luminosity [fb⁻¹]

The new CMS and ATLAS trackers

A whole new scale for silicon detectors

The new CMS and ATLAS trackers

The role of DESY

ATLAS ITk strips End-cap

2000 end-cap modules

100 "petals"

One fully instrumented end-cap

CMS Outer End-cap

1120 PS modules

16 Integrated "Dees"

5 integrated Double-disks

The new CMS and ATLAS trackers

The role of DESY

Covering the full spectrum

From the smallest sensing units to the biggest structures

DESY responsibilities cover the whole range of the detectors design, assembly, and test from the start

- Silicon sensors and modules
- (Instrumented) support structures and its electronics
- Global structures
- System testing
- Integration of sub-detectors
- Know-how expertise present at DESY for integration, installation and commissioning of detector systems instrumental for their success

Covering the full spectrum

From the smallest sensing units to the biggest structures

DESY responsibilities cover the whole range of the detectors design, assembly, and test from the start

- Silicon sensors and modules
- (Instrumented) support structures and its electronics
- Global structures
- System testing
- Integration of sub-detectors
- Know-how expertise present at DESY for integration, installation and commissioning of detector systems instrumental for their success
- Test beam facilities and expertise crucial to understand performance of the trackers

Threshold (ThDAC)

ige 11

ensor neutron irrad. 1.05 · 1015 1 MeV neg/cr

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - Dual-phase CO₂ cooling machines

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - **Dual-phase CO₂ cooling** machines

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - Dual-phase CO₂ cooling machines

Instrumented

supports

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - **Dual-phase CO₂ cooling** machines

Integrated structures

ATLAS EC skeletor

Instrumented

supports

CMS sector test setup

Tooling for assembly, QC and integration

Exploiting the strong and multidisciplinary engineering expertise at DESY

- Leaders in production of custom-built tooling and setups for components assembly, quality control (QC), and detector integration
 - Module and instrumented supports assembly
 - Thermal QC
 - Electrical QC
 - Integration tooling and tests
 - Dual-phase CO₂ cooling machines
- Produced and delivered most of these tools to the ATLAS and CMS Collaborations

Integrated structures

supports

Instrumented

Page 16

CMS sector test setup

Approaching production phase

First steps into final assembly of components

Recent milestones: ATLAS

- Qualified as module and instrumented support sites
 - More than 55 pre-production modules and three fully instrumented petals built and QCed during pre-production
- First cosmic tests performed on system test setup
- Multiple DESY components in production
 - Local supports ("petal cores")
 - ~ 20% of cores received and tested
 - Back-end electronics boards ("EoS")
 - >50% of production assembled and tested
 - Rapidly approaching production on modules (est. March 2025)
- Recent arrival of endcap global structure, ready for integration
 - End-cap integration already exercised on system test setup

Approaching production phase

First steps into final assembly of components

Recent milestones: CMS

- Pre-production gaining traction
 - First 5 pre-production modules in fabrication, expected O(25) by Feb 2025
 - First two pre-production supports ("DEEs") in-hand, a total of four by Feb 2025
 - DEE integration exercise took place at DESY in June 2024
 - 13 prototype modules mounted on prototype Dee and operated in parallel with final services routing
- Moving towards production
 - DEE production recently started (Dec 2024), first objects expected by Q2 2025
 - Module production aiming for Q3 2025

A new Endcap Calorimeter for CMS

High Granularity Calorimeter (HGCAL)

Replacing pre-shower, ECAL and HCAL

- Silicon and SiPM-on-Tile readout
- **SiPM-on-Tile**: "DESY technology"
 - Originally developed for future e+e- colliders
- Scintillator part: 3700 m², 280k SiPMs

DESY contributions

- Development and production of 2000
 Tilemodules
- Automated production techniques
- Mapping and calibration software

HGCAL SiPM scintillator tiles

CMS HGCAL Status

Approaching production

Production techniques proven

- Scintillator tile wrapping: DESY development
 - Reproduced at 2nd site (FNAL)
- Tilemodule assembly: adaptation of industrial pick & place technology

Quality control procedures in place

- Tile dimensions, light output, tilemodule response to particles (beam, cosmics)
 - Throughput matches production requirements
 - Results according to specs

Pre-series module production complete

- Close-to-final components
- Final production techniques

MIP

light

Populated HGCAL scintillator sector

CMS HGCAL Outlook

System testing and production start

2025-26: Tilemodule production and test

- Tile wrapping, electrical assembly, placement of tiles
- Tests of tiles, electronics and full modules

System tests and software development

- In cooperation with KIT
- Build up expertise for integration, commissioning
- Testbed for software: machine learning for calibration, simulation,...

Future developments

- Prepare for scalability and integration challenges
- High-granularity calorimeter for future Higgs factory

First 10-degree sector test

Beam test in 3T field

Belle-II detector at SuperKEKB e⁺e⁻ collider

B-mesons factory

A high precision detector on a "Super-B factory" to study CP violation with the aim to understand matter-antimatter asymmetry

- PXD: A DEPFET-based pixel detector, first of its kind
 - Enabled the world's most accurate lifetime measurements of D⁰, D⁺, D_s and Λ_c⁺
- PXD2: adding the two innermost layers to PXD for run 2 (10³⁵ cm⁻²s⁻¹ peak luminosity)
 - 0.207 m², 40 modules, 28M pixels, 50 x 55µm² each
- Belle-II is a successful, long-standing collaboration with German partners well beyond PXD and PXD2

PXD2 at DESY

Final performance tests

Role of DESY:

- Pre-commissioning at DESY (Full scale facility for half-shell testing)
 - Half-shell module operation and source scans
 - Thermal and mechanical tests
 - Training for PXD2 integration at KEK
- Transport to KEK
- PXD2 integration
 - Half-Shells mounting on beam pipe and operation test
 - VXD (PXD + SVD) integration
- VXD insertion into Belle II
- First in-situ cosmic test & commissioning
- SuperKEKB Run2 operation started in Feb 2024

PXD2 first operation results

PXD2 saying hello

In summary

DESY background and workforce provides a strong **systems and commissioning competence**

State-of-the-art facilities

Well regarded as a "**German instrumentation hub**" for universities and institutes

Multiple successful projects completed or in production

Ambitious goals for instrumentation in future experiments in HEP

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Sergio Díez Cornell FH - ATLAS Group

sergio.diez.cornell@desy.de

www.desy.de