

Future opportunities

FPF at DESY

Elisabetta Gallo
DESY 13-14 February 2025

Future strategic developments

Strong program looking forward

Ambition to shape the scientific landscape with international partners

- Full exploitation of ATLAS, CMS and Belle-II
- Studies towards a future collider, including new technologies (HALHF, muon collider), engaged in the ESPPU (Beate Heinemann)
- A broad and world-leading theory program
- Strengthen DESY as a national hub for German Universities

Strengthen the on-site program

- A laboratory for axion-like particles (ALPS-II, MADMAX, babylAXO)
- Strong-QED experiments (LUXE)
- Exploratory experiments for high-frequency GWs
- In general exploit our unique infrastructures (detector platform, test beam, cryoplatform,...) and unique expertise

Collider physics

ATLAS and CMS

Full exploitation of the HL-LHC

Bring to successful completion the Phase 2 upgrades (ITk in ATLAS, Outer Tracker and HGCAL in CMS)

- New detectors with innovative designs will allow to keep performance as good as now (or better) but at much higher pile-up
- Major milestone will be the measurement at 4σ (or better) of the Higgs self-coupling, by combining ATLAS and CMS. DESY huge expertise in Higgs couplings and combination will play a leading role in this measurement

- DESY is committed to the massive effort awaiting the LHC experiments in the next years: analysis of data and HL-LHC detectors construction, installation and commissioning at the same time
- Close collaboration with German Universities on all fronts

Belle II

Flavour powerful tool to test BSM

- Run 2 planned for at least 4 years until the next major upgrade in LS2
- Current challenge: sudden beam losses with large doses at the IP, causing damages to PXD2

To fully exploit Belle II needs design integrated L up to 50/ab, vital for accessing rare phenomena

- Example: test of the SM in 52 tau decays
- To reach the design luminosity of $6\times 10^{35}cm^{-2}s^{-1}$ likely a redesign of IP needed
- New CMOS-based tracking VTX being studied

arXiv:2203.14919, contribution to Snowmass

A future Higgs factory

DESY scientists **strongly contributing**, **also with highly visible responsibility roles** in the decision of the next Higgs factory (P5 process in the US, ECFA studies, ESPPU).

Driving developments on all fronts:

- Examine the physics case
- Detector concepts

 10^{2}

10

Software ecosystem

Experimental projections on Higgs couplings based on an SMEFT framework All couplings at percent, subpercent level

$$g = g_{SM}[1 + \Delta] : \Delta = O(v^2/\Lambda^2)$$

C. Grojean, arXiv:2206.08326

input for Snowmass

\10²

Linear collider

Higgs projections

- DESY one of the leading institutes in the ILC
- Precise measurements of Higgs couplings, especially b, c, g at few % level
- The measurement of the Higgs potential will be one of the main goals at the next Higgs factory
 - Higgs trilinear coupling can be measured at the ILC directly with 20% precision at $\sqrt{s} = 500~GeV$ (10% at 1 TeV)
 - Main channels are $4b, bb\tau\tau, bbWW$. Good reconstruction of $m_{b\bar{b}}$ and regression are essential (DESY contribution)

Jenny List, coleading the LCVision document for the ESPPU, chair of IDT for an ILC in Japan

Ties Behnke, ILD spokesperson

J. List, G. Moortgat-Pick, mG. Weiglein et al.. arXiv:2410.1619

U. Einhaus et al., PoSa ICHEP2022, 538 (2022)

FCC

Higgs couplings and BSM at FCC

DESY involved in the FCC feasibility studies and H/EW/top studies at FCC-ee:

- Higgs couplings at percent or sub percent precision, Higgs trilinear coupling via NLO in single Higgs (at 20% precision)
- Example: cutting-edge strange tagger at the moment, eventually measure the Higgs to strange coupling (120% precision in present projections)

Leading contributions to the CDR and Midterm feasibility study report

Christophe Grojean, FCCee Physics Coordinator

Felix Sefkow, convener detector concept

arXiv:2406.08590, F. Blekman et al

Software

Inside the activities of the FH Scientific Computing Platform

Software Ecosystem Key4HEP:

- HEP community decided 5 years ago to develop a common turn-key software stack for future colliders
- Involved communities by now: ILC, CLIC, CEPC, FCC-ee, FCC-hh, EIC, LUXE, Muon Collider
- A recognized success of the ECFA Higgs/EWTop Factory WG physics analysis tools, based on work started at DESY!

Modern generators for e^+e^- :

- Whizard, workhorse for all e^+e^- machines (and high-energy muon collider)
- Parallelization of the core phase-space integration and simulation achieved (30 to 50 times more speed)
- Automation of NLO QCD and EW (and mixed) corrections completed, up to 6-jets at NLO QCD

Frank Gaede, Key4HEP initiator and leader

arXiv:2203.07622, ILC at Snowmass

Juergen Reuter, Whizard author

HALHF and Muon Collider

New attractive far future technologies

An Hybrid Asymmetric Linear Higgs Factory

- Only 5 km, plasma for e^- (550 GeV), conventional RF for e^+ (31 GeV)
- Initiated by DESY, strong synergies with DESY accelerator division
- Luminosity L $\simeq 10^{34} cm^{-2} s^{-1}$, similar to an ILC machine
- Working towards adapted, asymmetric version of ILD detector, so far no fundamental issues in achieving ILC-like detector performance

Muon Collider

- DESY leading the MAIA detector concept
- Federico Meloni chair of the editorial team for the ESPPU submission

B. Foster, R. D'Arcy, A. Lindstroem New J. Phys. 25 (2023) 9, 093037 Newest layout

An $e^+e^- \rightarrow \mu^+\mu^- H$ event in the adapted asymmetric ILD detector

On-site experiments

On site experiments

A map of on-site experiments (see Axel Lindner's talk)

GWs detection at higher frequencies

Opportunity to explore GWs at higher frequencies

Universe expected to be populated by GWs over many frequencies

- Push the boundary and extend to high frequency
- No known astrophysical objects over O(kHz): if detected, points to BSM physics
- Understand the origin of stochastic GWs
- High risk, high return!

We can push the boundaries with relative small experiments:

 MAGO SRF cavity sensitive to frequencies 4-20 kHz

HF GW experiments

Revival of the MAGO activity in collaboration with UHH and FNAL

- R&D on cavity going on now
- DESY has unique expertise and ideal infrastructure:
 - The cryoplatform can supply up to 3 experiments (achieved in this POF period)
 - In construction, operation from 2026

Christoph Reinhard, Innovation Award for levitated sensors

Cryo Platform in the HERA North Hall

Summary

Summary

A mixture of on-site and international experiments, very attractive also for the young generation

A vibrant diverse portfolio, addressing the main questions in Nature now, under guidance of theory:

- Structure of the vacuum and its relation of the evolution of the Universe
- Matter-antimatter asymmetry
- Nature of dark matter and strong CP problem
- QED at the extreme
- Gravitational waves in an unexplored region

Ambition to shape the field and the future collider decision

On-site, shorter-term experiments, attractive for our national and international collaborators

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Elisabetta Gallo

FH/CMS

elisabetta.gallo@desy.de

www.desy.de

Backup

LUXE

Laser Und XFEL Experiment

Proposed new experiment at DESY and XFEL

- Test QED in non-perturbative regime (Schwinger limit) in collision of electron beam from XFEL and high-intense laser
- Synergy between particle, accelerator and laser physics

 Explore QED from the perturbative to the nonperturbative regime

LUXE

Experimental setup

Status:

- Collaboration of ~100 people
- T20 beam extraction line financed by Horizon Europe (ELBEX)
- JETI40 laser to be loaned by Jena University
- Experiment could start in 2030

Two setups: Compton and Breit-Wheeler

Muon Collider

New attractive looking-forward technologies

Muon Collider

- Energy staging from 3 TeV to 10 TeV (baseline) and higher, supported by P5 ("Muon Shot")
- DESY member of the International Muon Collider Collaboration:
 - design of the MAIA detector concept
 - development of track reconstruction algorithms (synergies with key4hep)
 - Federico Meloni chair of the editorial team for the ESPPU submission
 - BSM studies on minimal dark matter in a signature with disappearing tracks

DESY will host the IMCC2025 week

F. Meloni et al., arXiv:2405.08858