Topic: FPF

Precision Optical Interferometry

Heterodyne Detector

for Fundamental Science at ALPS II and Beyond

Todd Kozlowski on behalf of the ALPS Optics Group

Light-Shining-through-a-Wall: **Laboratory Axion Search**

Unique Infrastructure:

- long-baseline cavity inside a strong B-field: unique in the world
- development of the optics resulted in 6 Ph.D. theses

First results (26.01.2024 to 05.05.2024):

- most sensitive LSW experiment by factor 1,000,000 in signal rate
- Production Cavity to increase signal rate further factor of 3,000

Axion Parameter Space

Limits from previous LSW experiments (red), the current ALPS II sensitivity (blue) and the sensitivity to be achieved in 2025-2026 (black).

Vacuum Magnetic Birefringence: **Probing Nonlinear QED Effects**

Regeneration Cavity

60-year-old prediction of QED [2]

HERA Magnets

• in a magnetic field, the vacuum itself becomes birefringent

$$\Delta n^{(\text{VMB})} = n_{\parallel}^{(\text{VMB})} - n_{\perp}^{(\text{VMB})} = 3A_e B_{\text{ext}}^2$$

using an optical cavity, relative phase change is amplified

VMB@ALPS II: infrastructure perfectly suited for a probe of the VMB

VMB effect strength (above) and path-length sensitivities (left) of leading experiments vs ALPS II goals

after ALPS II data-taking in 2026, hand-off of infrastructure for a VMB search

Membrane

Detector

High-Frequency Gravitational Waves

Traditional Gravitational Wave Interferometry

- expertise in the techniques technology used in the GW community
- "classical" GW detectors regain sensitivity at higher cavity resonances

Shot-noise spectral densities for existing GW detectors and potential "GW Explorer" experiments [3]. The optics in ALPS II are of a type suitable for 100-m scale arm cavities for a "MHz GW Explorer".

Ultra-high Frequency GWs from the (Inverse) Gertsenshtein Effect

direct coupling of gravitational to EM waves in a magnetic field via the Gertsenshtein Effect [4].

at resonant optical frequencies (~300 THz), converted EM waves are enhanced by the cavity

Projected Sensitivity of modern and future experiments.

Levitated Sensor-Enhanced GW Detection

 optically trapped membranes provide a resonant enhancement if the gravitational wave frequency coincides with a (tunable) mechanical resonance

cm²-scale phononic Laser

Projected Sensitivity of a membrane GW detector.

Partner Institutions:

Leibniz Universität [1] Diaz Ortiz, M. et al., Physics of the Dark Universe, 35 (2022). [2] Ejlli, et al., Physics Reports 871, 1-74 (2020) [3] Schnabel, R. and Korobko, M., arXiv:2409.03019 (2024) [4] Gertsenshtein, M. E., J. Exptl. Theoret. Phys. (USSR) 41, 113-114 (1961) [5] Ejlli, A. et al., Eur. Phys. J. C 79, 1032 (2019).

[7] Reinhardt, C., Quantum Sensing for Fundamental Physics (talk)

[6] Aggarwal, N. et al., PRL 128.11 (2022)

Metre-long