Users help shaping the path to a **Sustainable Operation of** the **VISPA** computing cluster

VISPA is a small computing cluster.

20 single households of energy consumption

400 kg CO₂eq emitted due to power consumption of VISPA in June 2025

3 steps towards more sustainabe operations.

Involve the users by informing them.

Personal weekly energy consumption

How much energy did I consume last week?

Is it possible to get more information?

More insights

Job-specific power consumption and Labeling of jobs

- What were my three biggest jobs?
- How much did my failed jobs consume?
- • • •

How much did Workshop consume?

Newest paper

Icons from bqlqn

Studies show: Shifting jobs saves CO₂.

Simulation

Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud

arXiv:2110.13234

Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, Lauritz Thamsen

Realize — this idea

Shift jobs to less CO₂ intensive hours.

Percentage of renewable energy

- Available as forecast
- Intuitive

Shift Jobs to green hours.

Traffic Light by Fraunhofer ISE

Wake up. Look at forecast. Work. Repeat.

- Posted every morning
- Users can plan their day

Enable users to easily shift jobs.

Sustainability Flag

\$ submit --sustainability red ..

\$ submit --sustainability yellow ...

\$ submit --sustainability green ...

Rules exists to be broken.

Choose wisely.

Example: 1h would not be wise

\$ submit --sustainability green --maxwait 12 ...

→ As green as possible while meeting the deadline

Testing & Simulation on a Digital Twin.

What do we want?

- Develop and test new functions
- Downtime is not an issue

- Estimate the effects of changes
- Find optimal configurations
 (e.g. default value of maxwait flag)

Ready, steady, containerize!

- Each node is now a container
- Virtual ressources
- No load from jobs
- Complete HT
 Condor installation
- Use same configuration files

Use Digital Twin to measure effects of sustainability flag.

Informing Users

- Approximate energy consumption per job
- Added labeling of jobs

Shifting Jobs

- Use traffic light forecast
- Automatically shift jobs (if wanted by user)

Digital Twin

- Rebuild cluster in container
- Can be used for developing and simulating

Backup

Usage of the VISPA Cluster

17

Advantages of our Digital Twin

Testing

- ✓ Development environment
- √ Breaking is allowed
- √ Seamless deployment from twin to VISPA

Simulation

- √ Can run real jobs = Can be used as simulation
- ✓ no need to simulate HTCondor logic
- ✓ Still, simulation faster than real-time is possible
- √ Highly adjustable for other clusters

More insights

Job specific energy consumption

How much did my failed jobs consume?

....

Power consumption leads to CO₂eq emissions.

Power consumption of VISPA in June 2025:

~ 1 800 kWh

CO₂eq

Calculation of CO₂eq

Energy Source	Biopower	Solar Energy	Geothermal Energy	Hydropower	Wind Energy	Nuclear Energy	Natural Gas	Oil	Coal
gCO ₂ /kWh	18	46	45	4	12	16	469	840	1001

Koeffizienten aus IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

Calculation of CO₂eq

