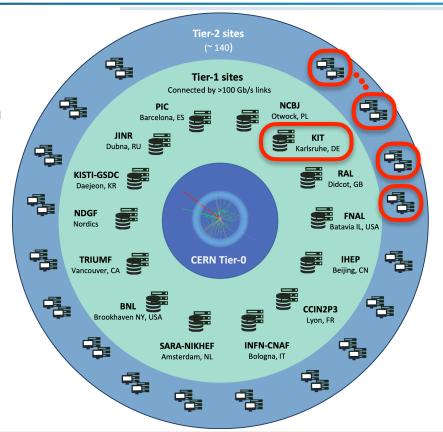


Maximilian Horzela, Henri Casanova, Frédéric Suter, and others — Aachen, 29. July 2025

The WLCG

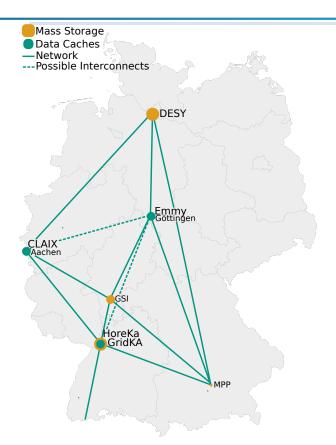
- World's largest computing grid
- Provides computing resources to store, distribute & analyse LHC data
 - >170 computing centers in 42 countries
 - >1 Million computer cores
 - >2 Exabyte of storage
 - \sim 1TB/s average transfer rate

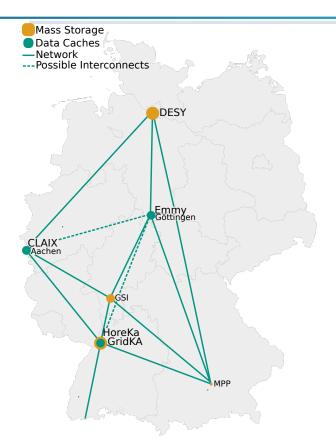
The WLCG


- World's largest computing grid
- Provides computing resources to store, distribute & analyse LHC data
 - >170 computing centers in 42 countries
 - >1 Million computer cores
 - >2 Exabyte of storage
 - \sim 1TB/s average transfer rate

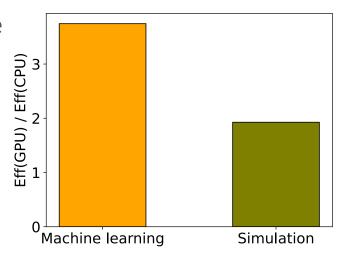
- Substantial contribution by German sites with high reliability
 - \sim 10% of total compute
 - ∼10% of network traffic

- Substantial contribution by German sites with high reliability
 - \sim 10% of total compute
 - \sim 10% of network traffic

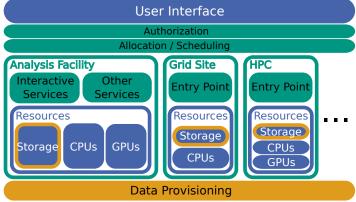

- Substantial contribution by German sites with high reliability
 - \sim 10% of total compute
 - \sim 10% of network traffic
- Decision to move from scattered network of sites to more consolidated infrastructure
 - NHR Supercomputers for compute


- Substantial contribution by German sites with high reliability
 - \sim 10% of total compute
 - \sim 10% of network traffic
- Decision to move from scattered network of sites to more consolidated infrastructure
 - NHR Supercomputers for compute
 - Data provisioning by DESY and KIT

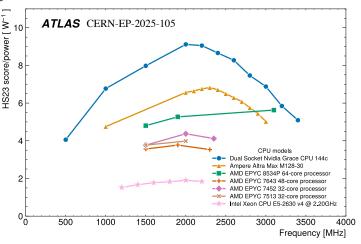
- Substantial contribution by German sites with high reliability
 - \sim 10% of total compute
 - \sim 10% of network traffic
- Decision to move from scattered network of sites to more consolidated infrastructure
 - NHR Supercomputers for compute
 - Data provisioning by DESY and KIT
- Remain a reliable partner in the WLCG

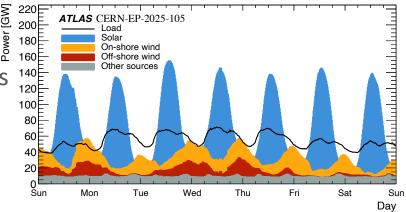


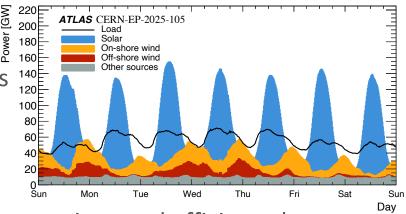
 New paradigms entering the game require adjustments to the computing model


- New paradigms entering the game require adjustments to the computing model
 - More heterogeneous hardware

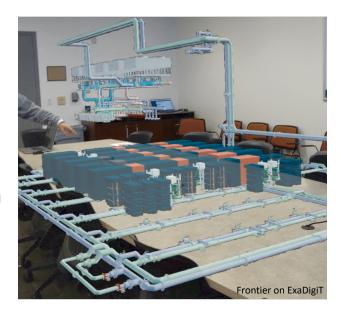
- New paradigms entering the game require adjustments to the computing model
 - More heterogeneous hardware
 - Interactive & opportunistic resources


- New paradigms entering the game require adjustments to the computing model
 - More heterogeneous hardware
 - Interactive & opportunistic resources
 - Federated data infrastructures


- New paradigms entering the game require adjustments to the computing model
 - More heterogeneous hardware
 - Interactive & opportunistic resources
 - Federated data infrastructures
 - Energy efficiency

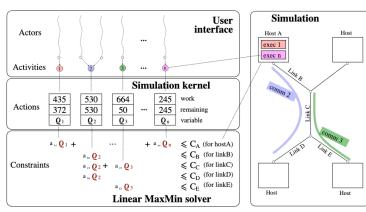

- New paradigms entering the game require adjustments to the computing model § 220
 - More heterogeneous hardware
 - Interactive & opportunistic resources
 - Federated data infrastructures
 - Energy efficiency
 - Energy source heterogeneity

- - More heterogeneous hardware
 - Interactive & opportunistic resources
 - Federated data infrastructures
 - Energy efficiency
 - Energy source heterogeneity
- Continue *reliable operation* without interruptions and efficiency losses with future *sustainable infrastructure*



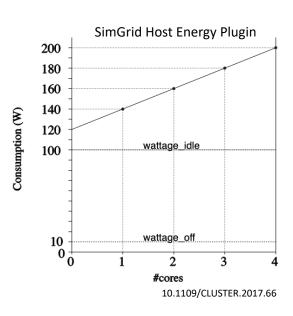
Solving the Challenges with Modelling

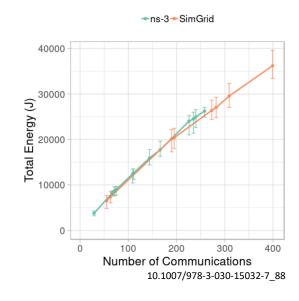
- How can we obtain successful computing models prior to building the infrastructures?
 - Historically → experience and gut feeling
 - Evidence-based → models calibrated on real-world data (digital twins)
- There is plenty of activity and examples (for single centres)

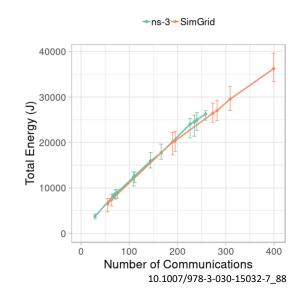


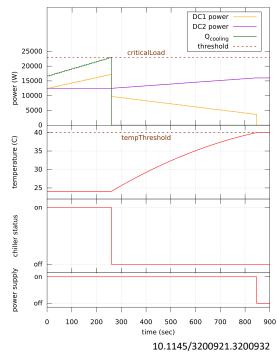
Modelling Execution Traces — SimGrid

- Execution of computation, communication & data retrieval/storage activities on hosts, links & disks
- SimGrid toolkit
 - Implementation of flow models & resource representations describing activity progression & resource sharing
 - Demonstrated accuracy, scalability, and expressiveness

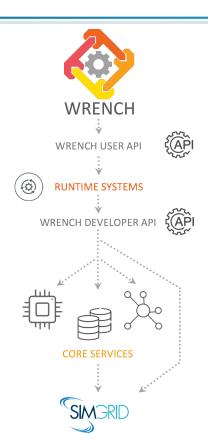



- Simulating execution traces
 - → Prediction of dissipated energy
 - Worker machine computations (DVFS, utilised cores) ✓


- Simulating execution traces
 - → Prediction of dissipated energy
 - Worker machine computations (DVFS, utilised cores) ✓
 - Network traffic

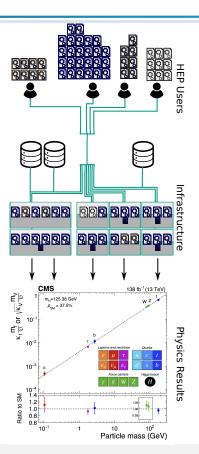

- Simulating execution traces
 - → Prediction of dissipated energy
 - Worker machine computations (DVFS, utilised cores) ✓
 - Network traffic √
 - Retrieving and storing data X

- Simulating execution traces
 - → Prediction of dissipated energy
 - Worker machine computations (DVFS, utilised cores) ✓
 - Network traffic √
 - Retrieving and storing data X
 - Infrastructure, i.e. Cooling ✓
- Powering with solar panels and batteries



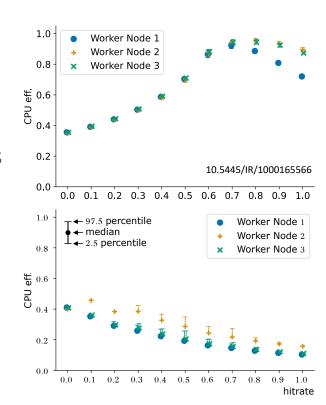
Modelling Services — WRENCH

- Concept of jobs that bundle a collection of activities that need to be executed
- Scheduler services distribute jobs on hardware
- Activities on hardware are managed by services & execution controllers
 - Computing services manage core usage
 - Storage services manage read/write actions
 - Transfer services manage data communications
 - Execution controllers start and stop processes



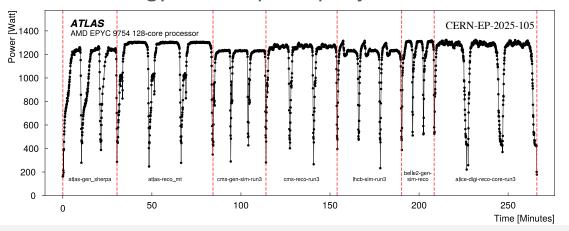
Modelling the Real-world — DCSim

- Definition and implementation of computing model
 - Job definition, mix, & scheduling
 - Dataset definition
 - Data & data transfer management
 - Location, Streaming, Caching
 - Workflows
 - Job Monitoring
- Because built with SimGrid & WRENCH can simulate energy consumption



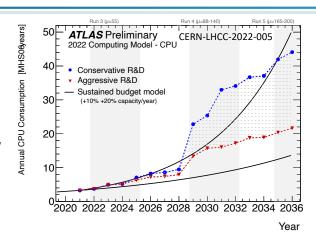
Calibration of Models

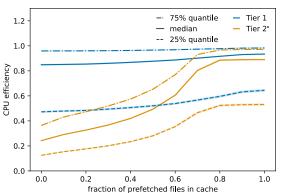
- Models are only abstractions with parameters
- Limited knowledge about real-world systems
- Don't expect out-of-the box agreement, but learn what is missing from real-world data
 - Tuning of simulation models & validation with independent data split
 - If tune generalises, also works for other platforms



Real-world Data

- No freely accessible repository of real-world data
- But HEP experiments store job monitoring data for jobs on WLCG sites
 - CPU time & efficiency, Bytes read & written, ...
 - Estimates of energy consumption per job





Conclusions

- We must optimise computing infrastructures (and software) for maximum compute efficiency and minimum energy consumption or CO2 emissions!
- Distributed computing systems are too complex for gut feeling or perceived experience
- We have the data and software to construct credible simulation models
- Let's experiment with future infrastructures already now!

