

GW Sensitivity Measures

Tom Krokotsch

November 20, 2024

Measures of GW signals

- ▶ The dimensionless strain h_0 from $h(t) = \text{Re } h_0 e^{i\omega_g t}$
Only defined for a (quasi) monochromatic GW
- ▶ The fourier transform $h(f)$
Unit: Hz^{-1}
- ▶ The PSD $S_h(f)\delta(f - f') = \langle h(f)h(f') \rangle$
Only (well) defined for stochastic signals, unit Hz^{-1}
- ▶ The characteristic strain h_c (dimensionless)
 - ▶ $h_c(f) := f h(f)$ for coherent sources
For monochromatic: $f h(f) \approx \sqrt{N_{\text{cyc}}} h_0 \Rightarrow$ depends on T_{int}
 - ▶ $h_c(f) := \sqrt{f S_h(f)}$ for stochastic sources
- ▶ $\Omega_g(f) \propto f^3 S_h(f)$ (not relevant now)

Measures of detector noise

- ▶ The PSD $S_n(f) = \frac{S_{\text{noise power}}(f)}{\mathcal{T}_{\text{sig}}(f)}$ Unit Hz^{-1}
- ▶ The characteristic strain h_n (dimensionless)
$$h_n(f) := \sqrt{f S_n(f)}$$

⇒ combination of multiple detectors and sources in one plot is best done using the PSDs S_n , S_h or the characteristic strains h_c , h_n .

h_0 vs h_c sensitivity

$S_{\text{sig}}(f) = \mathcal{T}(f) S_h(f)$, for monochromatic wave $P_{\text{sig}} = \mathcal{T} h_0^2$ and

$P_n(f) \gtrsim \Delta f S_{\text{noise power}}(f)$

⇒ Detector Sensitivity $h_0 \approx \sqrt{\Delta f_{\min} S_n(f)}$

c.f. with characteristic $h_n = \sqrt{f S_n(f)}$.

⇒ h_c sensitivity typically much worse than h_0

Sensitivities I'm unsure about

- ▶ IAXO Sensitivity in Fig. 6 (2409.06462, GWs with MADMAX)
- ▶ y-axis in Fig. 11 (2112.11465, GRAVNET)
- ▶ LSD & ADMX/SQMS sensitivity in Fig. 7 (2203.00621) and just about anywhere else. (2112.11465 reports h_0 sensitivity including integration time etc. but is mostly used as h_c sensitivity like in 2205.02153)