Hybrid Pixel Detectors

Characterization Process

Leticia Rosa Silicon Detectors Meeting, 03.12.2024

HELMHOLTZ

Outline

Hybrid Pixel Detectors

→ MEDIPIX & TIMEPIX

Characterization Process

→ Key measurements

Simulation Tools

Summary

1. Hybrid Pixel Detectors

Hybrid Pixel Detectors

Definition

Application-Specific Integrated Circuit (ASIC) readout electronics bonded to a pixelated semiconductor sensor layer.

R. Plackett, "Medipix and Timepix chip developments: Recent Measurements with Timepix as a Particle Tracker," presented at VERTEX 2009, Mooi Veluwe, 16th Sept. 2009.

Tlustos, L. Performance and limitations of high granularity single photon processing X-ray imaging detectors, 2005

Sensor Material

• Si, CdTe, CdZTe, GaAs

Particle Detection ASICS

	Medipix3	Timepix3			
Pixel size (µm)		55			
Readout	Frame based	Data driven / Frame based			
ToT/ToA	No	Yes			
Application	Imaging	Particle Tracking, Imaging			

Kraus, V., et al. (2011). FITPix - Fast interface for Timepix pixel detectors. *Journal of Instrumentation*, 6, C01079. https://doi.org/10.1088/1748-0221/6/01/C01079

CERN Knowledge Transfer.

Timepix - Use Case

Source Identification

Objective: Build a portable radiation measurement device to identify type of radioactive source

Sr-90 (β⁻)

Hybrid Pixel Detectors | Leticia Rosa, 03.12.2024 DESY.

Dose Rate Assessment

First TOA Measurement

Cluster Size Measurement

Energy Measurement

→ TOT is proportional to the charge released

3. Characterization Process

Characterization Process

Detector Production

Modules Integration

- **Energy Calibration & Linearity**
- Flatfield Correction & Restoration

Hybrid Pixel Detectors | Leticia Rosa, 03.12.2024 DESY.

Pixel Response - Equalization Process Medipix - CdTe 1000 µm

Figure 6: Threshold Scan for a chip.

MaPSA Testing at DESY

Pixel Response - Equalization Process

Current and BIAS Measurement

Medipix - CdTe 1000 µm

(a) Leakage current as a function of the applied bias in CdTe (b) Mean value of hit counts in sensor module sensors sensors in electron collection mode.versus negative bias voltage applied.

→ Ensure sensor reaches Full depletion zone (without reaching breakdown)

MaPSA Testing at DESY

Probing Tests

- Macro-pixe sub-assembly (MaPSA) for CMS Phase-II Detector Upgrade
- 8 x 2 Si sensors (300 µm)
- Before wire bonding

MaPSA Testing at DESY

Current and BIAS measurement

Energy Calibration

Medipix - Si 300 µm

3. Simulation Tools

PENELOPE

- Monte Carlo (Fortran Code V.2014 + PenEasy V.2015)
- Model the detector response

Simulation Parameters

Semiconductor Transport Properties

Parameters	eters Si		CdTe	GaAs	
Thickness [µm]	300	675	1000		
BIAS [V]	80	120	-300		
Electric Field [V/cm]	2666	1777	-3000		
Fano Factor	ano Factor 0.115		0.10		
Pair Creation E (W±) [eV]	3.62		4.43	4.2	
μτ Electron [cm²V ⁻¹]		2		8 x 10⁻⁵	
$\mu \tau$ Hole [cm ² V ⁻¹]	1		2 x 10⁻⁴	4 x 10 ⁻⁶	
Charge Carrier Collected	Holes		Electrons		

THOR

Transport of electrons and HOles in semiconductoRs

- Modified version of PenEasy code
- Extends functionalities of PENELOPE
- Improve simulation of electrons and holes transport dynamics in semiconductors

Energy Deposition

Si 675 um - 15 keV

Intrinsic Efficiency

Intrinsic Efficiency

Fluorescence Effect

Fluorescence

In High-Z Materials

	N	k-edge (keV)	Kα energy (keV)	dα (μm)	η [%]		
Si	14	1.84	1.74	12	5		
Ge	32	11.11	9.89	51	55		
GaAs:							
Ga	31	10.38	9.25	42	51		
As	33	11.87	10.54	16	57		
CdTe:							
Cd	48	26.73	23.17	128	84		
Те	52	31.82	27.47	64	87		

Journal of Instrumentation Volume 6 June 2011 D Pennicard and H Graafsma 2011 *JINST* **6** P06007 doi:10.1088/1748-0221/6/06/P06007

M. Campbell.Single Particle Detection for Spectroscopy CT and Tracking in Hadron Therapy Using Medipix Chips.2016

Modulation Tansfer Function

- \rightarrow Quantifies the system spatial resolution across the frequency domain
- Medipix3RX
- Si 300 μm and CdTe 1000 μm
- Tungsten sharp edge object (2°)
- X-ray tube (70 kV)

Conical Beam (Polychromatic)

Simulated Edge

Experimental Edge

Simulation x Experimental Data

MTF Assessment

Summary

Characterization Process:

- → Key measurements define detector state and aim to optimize operation conditions
- → Is an essential part of detector development and production
- → Can be used for different applications, such as High Energy Physics, Photon Science, and Medical

Simulations:

- → Simulations enable modeling the detector's behavior in detail
- → Insights on future applications and detector design

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Leticia Rosa FH - CMS leticia.braga.da.rosa@desy.de + 49 0 40 8998 2407

Specifications

Medipix3

Pixel matrix 256 x 256 **Pixel matrix** 256 x 256 Pixel size 55 x 55 µm² 55 x 55 μm² or 110 x 110 μm² Pixel size Technology CMOS 130 nm CMOS 130 nm Technology Measurement modes Measurement modes Single pixel (SPM) ٠ Charge summing (CSM) • • 14 + 4 bit TOA only Gain modes Super low gain mode • Readout type Low gain mode ٠ High gain mode . Super high gain mode ٠ Dead time (pixel, data driven) >475 ns (pulse processing + packet transfer) # thresholds 2 per 55 µm pixel • Output bandwidth 40 Mbits/s - 5.12 Gbits/s 8 per 110 µm pixel • Maximum count rate 0.4 Mhits/mm²/s (data driven mode) Programmable 2 x 1-bit **TOA Precision** 1.56 ns counter depths 2 x 6-bit 2 x 12-bit Front end noise 60e- RMS 1 x 24-bit Minimum threshold ~500 e-Readout type Frame based Sequential R/W Simultaneous R/W **Readout Time** Depends on counter depth used Minimum threshold ~ 500 e-

M. Campbell.Single Particle Detection for Spectroscopy CT and Tracking in Hadron Therapy Using Medipix Chips.2016

Timepix3

TOA

Data driven

Frame based

Simultaneous 10 bit TOT and 14 + 4 bit

10 bit PC and 14 bit integral TOT

(both modes with zero suppression)

Hybrid Pixel Detectors | Leticia Rosa, 03.12.2024 DESY.

Timepix Operation Modes

Particle Counting

Time of Arrival (ToA)

Time over threshold (ToT)

Medipix

M. Campbell. Particle Detection and Imaging Using the Medipix and Timepix Chips.2018

Measure the arrival time when particles are detected.

Measure of the energy deposited by the particle

Medipix Overview

Adapted from Ballabriga, R. & Llopart, X. Medipix3RX manual v1.4, 2012

2. Characterization Process

Count-rate Linearity

Medipix - Si 300 µm

Figure 4. Count-rate linearity measurement fitted to the paralyzable model. The ideal detector's response is depicted in the red dashed line.

MTF Measurement

Slanted Edge Method

- Modulation Transfer Function \rightarrow
- Quantifies the system spatial resolution across the frequency domain \rightarrow

Viallefont-Robinet, F. et al. Comparison of MTF measurements using edge method: towards reference data set, 2018

DEFINITION

MTF = |F[LSF(x)]|

Region Of Interest (ROI)

Pixel grid

(1) Edge under

analysis

(2) Perpendicular

to edge

(5) Projected

edge spread

function (ESF)

DESY. Hybrid Pixel Detectors | Leticia Rosa, 03.12.2024 $\frac{d}{dx}ESF(x)$

(3) Point in

image

LSF(x) =

(4) Projected onto perpendicular

n

PENELOPE Code Structure

PENELOPE Simulation Process

Simulation Workflow

THOR Code

Error Calculation

- \rightarrow Randomic ROIs selection along the edge
- → ESF calculation for each ROI

