Solar Orbiter Images Challenge

Graphics & Games: Frederico Testagrossa, Mykhailo Levytskyi, Niklas Düser, Athira Sreejith & Jannes Terlau

Organization Among the Team

- Data analysis and preparation was done collectively
- Different network architecture approaches throughout the team
- Comparison of individual results + joint pursuit of most "promising" approach

Approach – Data Preparation

- Applied normalization via standardization (global or column-wise)
- 80% training data (~4900 time points) and 20% test and validation data (~1200 time points)
 - Input data dimensions: {time points}x1x128x128
 - Target data dimensions: {time points}x8x128x128
- Preparation of batches with a size of 64 time points per batch

Approach – Network Architecture

- Different network approaches were constructed
 - LeNet-like architecture (target data was flattened)
 - Autoencoder
 - CNN
- Loss function: MSE
- Optimizer: Adam (default settings with learning rate of 1e-2)

Approach – Network Architecture (cont'd)

Approach – Training Process

- Employed batches of 64 time points for training
- Training duration approximately 10 minutes
- Different normalization techniques showed different behaviour

```
Epoch [1/5], Loss: 0.0235, Val_oss: 0.0204
Epoch [2/5], Loss: 0.0173, Val_oss: 0.0176
Epoch [3/5], Loss: 0.0165, Val_oss: 0.0173
Epoch [4/5], Loss: 0.0166, Val_oss: 0.0177
Epoch [5/5], Loss: 0.0211, Val_oss: 0.0190
```

```
Epoch [1/5], Loss: 0.4597, Val_oss: 0.4361
Epoch [2/5], Loss: 0.3878, Val_oss: 0.3308
Epoch [3/5], Loss: 0.3921, Val_oss: 0.3014
Epoch [4/5], Loss: 0.2761, Val_oss: 0.2758
Epoch [5/5], Loss: 0.3024, Val_oss: 0.2804
```


Results

Results

Channel: 131A Channel: 171A Channel: 193A Channel: 211A Channel: 335A Channel: 304A Channel: 1600A Channel: 1700A Pred. Pred: 131A Pred: 171A Pred: 193A Pred: 211A Pred: 304A Pred: 335A Pred: 1700A Pred: 1600A Org.

Environmental Impact

- Simple structure and low epochs
- Trained on 20 threads of CPU for 90s
- Analysis based on codecarbon
- Training process took approximately 1 Wh for 5 epochs (0.000679 kg of CO2)

Outlook

- Adding fully connected layers in network architecture
- Downsize image size throughout network for faster training process
- Tuning of various hyperparameters (learning rate, batch size, ...)