
Mastering Model Building
ERUM-DATA-HUB & DIG-UM DEEP LEARNING SCHOOL “BASIC CONCEPTS”

How to fail

many times  
and eventually succeedMaximilian Horzela, Markus Pirke 

Much of the material heavily inspired by Marcel Rieger, ChatGPT, "Deep learning in Physics Research", Erdmann et al.
shamelessly stolen from

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook


Complexity of Artificial Neural Networks (ANNs)
• NNs are not complicated 
• But complex 

• Well suited for complex tasks with 
multivariate dependencies 

• Most challenges with NN models 
related to complexity 

A. Computational complexity 
B. Problem complexity
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Who are we to tell you?
• We are experimental physicists, not 

data engineers/scientists, with a mix of 
expertise in 
• Stochastic & statistics 
• Computational modeling 
• Data processing & management 

• You will see that these are really the 
fundamentals needed for coping with 
machine learning
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Recap: Artificial Neural Networks (ANNs)

0Mean1Sigma https://www.youtube.com/watch?v=xg4bIeJTVF0

https://www.youtube.com/watch?v=xg4bIeJTVF0


What are NNs practically?
A. NNs are directed weighted graphs of 

neurons that perform a mapping 
• Tensors model the network of nodes 

and edges 
• Tensor operations define mathematical 

dependencies between tensors 
B. NNs are typically multiple layers of 

neurons, each layer chosen for a 
(specific) purpose
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Perceptron
 

• Inputs  
• Weights  
• Bias  
• Activation Function  

• Output 

̂y = σ (W ⃗x + b)
⃗x
W

b
σ

̂y
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(Deep) Neural Networks
 

• Inputs  

• Weight matrices  

• Biases  

• Hidden layers  

• Activation Functions  

• Outputs  

⃗ ̂y = … ⃗σ(2) (W(2) ⃗σ(1) (W(1) ⃗σ(0) (W(0) ⃗x + b(0)) + b(1))…)
⃗x

W(i)

b(i)

h⃗(i) = ⃗σ(i−1) (W(i−1)h⃗(i−1) + b⃗(i−1))
⃗σ(i)

⃗ ̂y
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ŷN3

ŷ2
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Machine Learning = NNs
• Optimization of model parameters with 

respect to an objective 
• Challenge: Many free parameters for a 

statistical fit  
• Solution: 

• Exploit analytical differentiability at 
high granularity of NNs  

• Efficient numerical optimization 
techniques

N(param) ≳ N(data)
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Building Blocks, Again, but with More Detail



Objective Functions
• Define your model’s task and how it learns 

• Reinforcement Learning: Reward 
• Regression: Difference between model 

prediction and target 
• Classification: Metric of similarity or 

distance 
• … 

• Often heavily inspired by traditional 
statistical methods
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Regression
• Find the set of model parameters that leads to a prediction that is as 

close as possible to a target 
• Minimize the (absolute) difference between prediction and target 

• Many differentiable candidates available
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Mean Squared Error 
(MSE) Smooth Sensitive to outliers

Mean Absolute Error 
(MAE) Robust to outliers Constant gradients

Log-Cosh Loss MSE for small, MAE 
for large values

Computational 
overhead

Quantile Loss Not just the mean Requires choices, 
constant gradients

1
N

N

∑
i+1

(yi − ̂yi)2

1
N

N

∑
i+1

yi − ̂yi

N

∑
i+1

log (cosh (yi − ̂yi))
N

∑
i+1

max (q (yi − ̂yi), (q − 1) (yi − ̂yi))



Classification = Categorical Targets
• Classification targets different categories that can be labelled with 

discrete values 
• But no information in absolute values 

• Differences  don’t work 
• For two classes we want that something is either cat/“signal”/1 or 

dog/“background”/0 
• But this is maybe too simplistic/idealistic 
• Instead let’s think in probabilities

(yi − ̂yi)
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Cross-Entropy
• Predict probabilities   with  for  classes 

• Softmax function gives the correct mapping: 
• Quantify likeliness of target and prediction with a goodness-of-fit test 

• e.g. Kullback-Leibler distance 
• … roughly equivalently: cross entropy  

• Put this all together and you get the Cross Entropy Loss for target t and 
prediction s

̂yi ∈ [0,1] ΣC
i ̂yi = 1 C
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̂yi = f ( ⃗s )i =
esi

∑C
j sj

D(t(x), p(x)) = Σxt(x)log
t(x)
p(x)

H(t(x), p(x)) = − Σxt(x)log p(x)

L( ⃗t , ⃗s ) = −
C

∑
i

witi log
esi

∑C
j sj



Activation Functions
• Without activation functions  or linear 

 

• Non-linear function needed and we want them to be differentiable, 
commonly used ones are

⃗σ ⃗σ( ∝ ⃗x)

⃗ ̂y = … ⃗σ(2) (W(2) ⃗σ(1) (W(1) ⃗σ(0) (W(0) ⃗x + b(0)) + b(1))…) → ⃗̂y = Weff ⃗x
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Discussion of Activation Functions
• Sigmoid historically used a lot because maps 

, useful for probabilities 
• But  vanishes for small 

and large values 
• Tanh maps , useful for classification, better 

than sigmoid in many cases 
• But still gradient can approach zero and 

computationally quite expensive 
• Both: Lead to static behavior at large and small inputs

ℝ → (0,1)
dσ(x)/dx = σ(x)(1 − σ(x))

ℝ → (−1,1)
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Minimal Amount of Non-linearity: ReLU
• Computationally simple and non-linear 
• Threshold behavior 

• Constant gradient of 1 for , never zero 
• Gradient 0 for  , unit dead 

• Can be desired turning off unnecessary neurons 
• Network can “get stuck”, neurons dying out 

• ELU is one variant that fixes dying ReLU 
• Also smooth transition at 0 and gives negative values 

for negative inputs

x > 0
x < 0
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Model Training



Gradient Descent
• How can we optimize the parameters of the 

model to optimize the associated loss? 
• Minimization problem, but the loss has 

many parameters 
• Start randomly, measure the local gradient, go 

a step in direction of gradient, repeat! 

  with learning rate  

• Iterative numeric minimization of the loss

Wt+1 = Wt − α
∂L
∂W Wt

α
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Stochastic and Batch Gradient Descent
• Computing the gradients and updating the model parameters is 

computationally expensive 
• Do it for each data point  Stochastic: Noisy, fast convergence 

• Only once for all data  Batch  Fluctuations average out, 
big steps 

• We call one full pass through all data (rather than a batch) an epoch

→
→ L := ⟨L⟩batch
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Backpropagation
• How do we get the gradient with respect to the model parameters? 
• Remember we have chosen all ingredients to be differentiable. So we 

can just apply chain rule! 
 
 
 

• No additional parameters needed! 
• Implemented as exact “automatic differentiation” , e.g. Autograd
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L ↔
∂L
∂w1

=
∂L
∂ ̂y

∂ ̂y
∂σ

∂σ
∂Σ

∂Σ
∂w1

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html


Optimizer
• Backpropagation and Gradient Descent are the backbone of model 

training 
• Learning rate and extensions with other parameters need to be set 
• All together is called the optimizer 

• But real Loss Landscapes can get quite complicated, there can be 
• Plateaus  
• Local minima  
• Fluctuations 
• Narrow spikes and minima 

→ ∂L = 0
→ ∂L = 0

21

L(ω)

ω



Optimizer Optimization — Adaptive Learning 
• Individual parts of the network might learn 

different things and therefore benefit from 
individual learning rates 

• Measure the variance of all local gradients 
accounted  

• And reduce learning rate when variance is high 
• Put more emphasis on features containing 

important information 
• Implemented in Adagrad
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Δt = α
∂L
∂W Wt

vt = ∑
t

( ∂L
∂W Wt

)
2

ϵ > 0 for stability

α → αt =
α

vt + ϵ

https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html


Optimizer Optimization — Adaptive Learning 
• Might lead to very small learning rates over time 

when  grows indefinitely 
• Try regularizing with a moving average  

• Not full history, but at least previous cycle 

• Implemented in RMSprob

vt
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vt = ρvt−1 + (1 − ρ)( ∂L
∂W Wt

)
2

with 0 < ρ < 1

https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html


Optimizer Optimization — Adding Momentum 
• Often biggest improvements in the loss at the beginning 
• Small local bumps and plateaus should not suddenly stop optimization 

“in right direction” 
• Keep some speed  from the previous cycles 

• Combine this with Adaptive Learning and you get Adam 
• Most used optimizer in modern model training 
• Always the first choice

β < 1
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Δt = βΔt−1 + α
∂L
∂W Wt

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html


Learning Rate Decay
• Even with Adam optimization can circle around 

minimum  
• Reduce the learning rate according to some schedule 

• Multiply by some  every  steps 
• Check for plateauing loss with history of  

last  losses and reduce  times 
• … 

• Tools often called Schedulers

ρ N

n k
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https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate


The Symmetry Problem
• All weights are zero 

• All activations are zero 
• Gradients are zero 

• Similar for setting all weights to same 
constant 

• Symmetries  in weight matrix 
 limit explorable 

space 
• Better: Random initialization

𝒮 W
𝒮W = W → 𝒮∂L ≈ ∂L
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Xavier Initialization
• NNs are all about the weights 

• Too large: Saturation 
• Too small: Might get stuck 

• In back-propagation the gradient tends to get smaller the deeper the 
network 

• Extensively studied: Glorot et al., arXiv:1502.01852 
• Use the established defaults 

• PyTorch even hides the functionality, so you don’t get easy access
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https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852
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Data Everywhere



Input Data
• Data is the most crucial part of the neural 

network training 
• Biases that are in data will end up in the 

model 
• But also numerics and types of data play 

a role
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https://www.youtube.com/watch?v=tpOg87AQvbo


Data Normalization / Scaling
• Large input data might lead to vanishing gradients, saturation, numerical 

instability, … 
• Weights from left to right decrease  

• What if large output data is expected? 
• Weights from left to right have to increase 

• Normalize data to same value range 

• For outputs retransform f ′￼→ f = f ′￼σ + μ

30

with μ =
1
m

m

∑ xif → f ′￼=
f − μ

σ
, σ2 =

1
m

m

∑ (xi − μ)2 + ϵ



Batch Normalization
• Apply normalization batch-wise before each layer input  

• Reduces sensitivity to initial weights 
• Improves numerical stability 

• But forces   and  

• Reintroduce sensitivity by reshaping the inputs   
with learnable parameters  and  
• Allow the model to “learn it back”

⟨x⟩ = 0 σx = 1
̂xi′￼= γ ̂xi + β

γ β

31

̂xi =
xi − μ

σ



Categorical Input Data
• Categorical flags can be easily mapped by integers 

• But adjacent values do not carry additional info  

• Create a vector with  with one position equals 1 others 0:  
One-hot encoding 
• High-dimensional and sparse (mostly zeros), unrelated categories 

• Make categories learnable with embedding layer 
• Dimension of embedding vectors is a parameter 
• Similar categories will end up with similar vectors 

0c − 1c = 0c − 2c

d = Nc
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Index    Category    Embedding
0 Red         [0.12, 0.67, 0.21] 
1 Blue        [0.11, 0.68, 0.19] 
2 Green       [0.95, 0.05, 0.88] 



Missing Input Data
• Input features might be missing in some data (not 

every collision event contains a charged lepton) 
• Train multiple networks 

• Computationally expensive 
• Less data for training of each 

• Encode missing features in “default” values 
• Capture additional information from the 

absence of data 
• Hard to define



Data Imbalance
• Data is not uniformly distributed 

• One class more likely, peaked distribution 
• Network will be less sensitive to regions/classes that are sparsely 

populated 
• Possible workarounds: 

• Down-sampling: Remove some data from overly populated areas  
• Collocation: Let training batches to be uniformly distributed 
• Sample-weights: weight each data item to create uniformity 

• Loss function implementations support this

34
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Overtraining



Model Capacity and Capability
• Many free parameters leads to high capacity 

• With enough parameters, any data can be fitted 
• “Memorize the data”, no generalization!  Overtraining 

• Too few parameters will  
restrict capability 
• The model cannot  

capture the complexity 
• Luckily, with NNs we don’t  

need to restrict ourselves

→
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5.2 Deep Learning and Neural Networks

the backpropagation algorithm as before (Equation 5.13), the weight update rule is amended to

wi,t+1 = wi,t � h ·
1q

vi,t/(1 � bt
2) + e

·
mi,t

1 � bt
1

, (5.17)

with bt
1,2 decreasing over time and a small number e for numerical stability. If one imagines the

loss function as a high-dimensional surface, the ADAM update rule can be perceived as an object
descending along the surface with momentum and friction. The algorithm yields faster global
convergence [201] and is less sensitive to perturbations due to local minima.

Overtraining suppression
Overtraining occurs when the dataset used for training is an insufficient representation of the
underlying, general probability distributions, either due to a bias in the selection of examples,
or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
to learn characteristic, but non-representative features. Sophisticated applications require net-
works to find complex inner representations in data and hence, rely on an appropriate model
that involves a considerable amount of free parameters. This trade-off situation is illustrated in
Fig. 5.4. The neural networks developed in this analysis employ two methods for overtraining
suppression, which are described in the following two paragraphs.

x

y

x

y

x

y

f (x) = pol(1) f (x) = pol(3) f (x) = pol(8)
Underfitting Appropriate capacity Overfitting

y(x) = pol1(x) y(x) = pol3(x) y(x) = pol8(x)

x x x

y y y

Figure 5.4: Illustration of model capacity, under- and overfitting. Given a set of examples (xi,
yi), a model with too few parameters is an insufficient representation of the data (left), while
a too complex model is prone to fluctuations, might not generalize, and requires measures for
suppressing overtraining (right). While a model with an appropriate capacity (center) appears
reasonable, it might not be able to find complex inner representations of the input data.

In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term

L2 = l Â
i

w2
i (5.18)

to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As

71

"truth""truth" "truth"



Regularization
• Often volatile behavior or large values alternations are necessary 

• Some weights need to become larger than others 
• But we want to do this moderately 

• Regularize the loss with penalty term  or  

• If really needed the training will slowly enforce higher weights 
• Tuning the mediator  can help

L1 = ΣWwi L2 = ΣWw2
i

λ

37

Ltot = L + λL1/2



Dropout
• When one weight becomes large, others might 

adapt 
• Restrict “undesired reliance” of weights on 

each other by stochastically switching parts off 
• Randomly turn off neurons with probability 

 during processing 

• Scale up next neurons inputs by  
to account for missing neuron 

• Next iteration pick different neurons

p
1/(1 − p)
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Validation and Test
• How can we be sure we are not screwing up? Validate! 
• Test performance of your NN on independent validation data 

• If loss diverges, the model overtrains 
• Guides the selection of the model 

• Also keep another independent set of 
 test data for final true measure of  
generalization 
• Overall reduction of data for  

training
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Early Stopping
• Simplest method to fight overtraining 
• Stop as soon as validation data reliably shows no improvement or 

overtraining 
• Or as soon as generalization error becomes too large 

• Pick the model that has performed  
the best on validation data

40



Cross Validation
• Splitting the available data when it is sparse can be painful 

• We can trade data (use all data for training and validation) against 
compute time  

• k-fold cross validation 
• Split data into  sub-samples (folds) 
• Train on , validate on remaining 
• Rotate folds and repeat (total  times) 
• Average the performance across all folds 

• Also reduces dependence on train/validation split

k
k − 1

k

41
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Other Optimizations



Miscellaneous Optimizations
• More data 
• Data augmentation (more data and free, but situational) 
• Noise injection (can be more data, but loss in performance) 
• Ensemble training (averaging over many networks) 
• Model parameter reduction  

• Pruning (Features & Parameters) 
• Shared Parameters (i.e. CNNs, Transformer)
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Hyper-Parameters
• Many parameters introduced to the various building blocks of a model 

• Architecture: number of layers & nodes per layer; types of layers, 
batch normalization; activation; weight initialization 

• Optimizer: learning rate , momentum , decay  
• Training: Batch size, folds, splitting fractions, regularization, dropout 

• Some have well tested defaults 
• Some are independent and can be optimized individually 
• Remainders have to be optimized simultaneously

α β ρ
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Hyper-Parameter Optimization
• Many approaches exist to explore hyper-

parameter space 
• Random search 
• Grid search 
• Bayesian optimization 

• Overall a very brute-force and expensive 
procedure but sometimes necessary 
• Definitely necessary for highest 

performance
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Remark: Resource Availability & Optimization
• Training (and evaluating) NNs is computationally expensive 

• Data needs to be stored and moved 
• A ton of algebraic operations are performed 
• Similar amount of gradients are calculated  

and parameters updated 
• Repeated many times 

• Software and hardware ensure efficient processing 
• But hardware is expensive, and running it energy intensive 

• Think twice before you heat someone’s server! Be resource-efficient!
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DOI:10.1049/cdt2.12016
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Finally, some hands-on

ALSO YOU



NNs as Industry Standard
• Wide and active community develops  

standard tools, e.g. PyTorch, tensorflow, … 
• Standard features already 

implemented 
• Optimized computation, memory 

consumption, data handling 
• Collaborative development and usage of 

common open tools enabled the recent 
success of ML
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https://pytorch.org/docs/stable/index.html
https://www.tensorflow.org/learn


PyTorch
• You will continue using PyTorch for the exercises 

• It has become the most widespread tool for ML applications 
• Benefit from the work of the community and be a part of it!
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https://pytorch.org/


Today’s exercise
• Will depend on the previous exercises, we will continue there 
• Open the DNN4HEP_exercise.ipynb notebook, also uploaded on the 

Indico, in Google Colab 
• There are code blocks marked with 

 
Ignore them on your first pass! 

• The instructions should be self-explanatory. If not, feel free to ask! 
• Have fun!
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This is for the Mastering Model Building exercise. Skip this block in your first pass!

https://github.com/els285/Aachen_Intro2NN/blob/main/Exercises/DNN4HEP_exercise.ipynb

