
Mastering Model Building
ERUM-DATA-HUB & DIG-UM DEEP LEARNING SCHOOL “BASIC CONCEPTS”

How to fail

many times
and eventually succeedMaximilian Horzela, Markus Pirke

Much of the material heavily inspired by Marcel Rieger, ChatGPT, "Deep learning in Physics Research", Erdmann et al.
shamelessly stolen from

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook

Complexity of Artificial Neural Networks (ANNs)
• NNs are not complicated
• But complex

• Well suited for complex tasks with
multivariate dependencies

• Most challenges with NN models
related to complexity

A. Computational complexity
B. Problem complexity

2

Who are we to tell you?
• We are experimental physicists, not

data engineers/scientists, with a mix of
expertise in
• Stochastic & statistics
• Computational modeling
• Data processing & management

• You will see that these are really the
fundamentals needed for coping with
machine learning

3

sandserif

Maximilian
Uni Göttingen/CERN

Markus
FAU Erlangen-Nürnberg

4

Recap: Artificial Neural Networks (ANNs)

0Mean1Sigma https://www.youtube.com/watch?v=xg4bIeJTVF0

https://www.youtube.com/watch?v=xg4bIeJTVF0

What are NNs practically?
A. NNs are directed weighted graphs of

neurons that perform a mapping
• Tensors model the network of nodes

and edges
• Tensor operations define mathematical

dependencies between tensors
B. NNs are typically multiple layers of

neurons, each layer chosen for a
(specific) purpose

5

xN0

x2

x1

h(1)
N1

h(1)
4

h(1)
3

h(1)
2

h(1)
1

h(2)
N2

h(2)
4

h(2)
3

h(2)
2

h(2)
1

ŷN3

ŷ2

ŷ1

Perceptron

• Inputs
• Weights
• Bias
• Activation Function

• Output

̂y = σ (W ⃗x + b)
⃗x
W

b
σ

̂y

6

xN

x2

x1

P
ŷ

!1

!2

!N

b

æ

Trainable

Trainable

Choice

Choice

Choice

(Deep) Neural Networks

• Inputs

• Weight matrices

• Biases

• Hidden layers

• Activation Functions

• Outputs

⃗ ̂y = … ⃗σ(2) (W(2) ⃗σ(1) (W(1) ⃗σ(0) (W(0) ⃗x + b(0)) + b(1))…)
⃗x

W(i)

b(i)

h⃗(i) = ⃗σ(i−1) (W(i−1)h⃗(i−1) + b⃗(i−1))
⃗σ(i)

⃗ ̂y

7

xN0

x2

x1

h(1)
N1

h(1)
4

h(1)
3

h(1)
2

h(1)
1

h(2)
N2

h(2)
4

h(2)
3

h(2)
2

h(2)
1

ŷN3

ŷ2

ŷ1
Choice

Trainable

Machine Learning = NNs
• Optimization of model parameters with

respect to an objective
• Challenge: Many free parameters for a

statistical fit
• Solution:

• Exploit analytical differentiability at
high granularity of NNs

• Efficient numerical optimization
techniques

N(param) ≳ N(data)

8

9

Building Blocks, Again, but with More Detail

Objective Functions
• Define your model’s task and how it learns

• Reinforcement Learning: Reward
• Regression: Difference between model

prediction and target
• Classification: Metric of similarity or

distance
• …

• Often heavily inspired by traditional
statistical methods

10

Regression
• Find the set of model parameters that leads to a prediction that is as

close as possible to a target
• Minimize the (absolute) difference between prediction and target

• Many differentiable candidates available

11

Mean Squared Error
(MSE) Smooth Sensitive to outliers

Mean Absolute Error
(MAE) Robust to outliers Constant gradients

Log-Cosh Loss MSE for small, MAE
for large values

Computational
overhead

Quantile Loss Not just the mean Requires choices,
constant gradients

1
N

N

∑
i+1

(yi − ̂yi)2

1
N

N

∑
i+1

yi − ̂yi

N

∑
i+1

log (cosh (yi − ̂yi))
N

∑
i+1

max (q (yi − ̂yi), (q − 1) (yi − ̂yi))

Classification = Categorical Targets
• Classification targets different categories that can be labelled with

discrete values
• But no information in absolute values

• Differences don’t work
• For two classes we want that something is either cat/“signal”/1 or

dog/“background”/0
• But this is maybe too simplistic/idealistic
• Instead let’s think in probabilities

(yi − ̂yi)

12

Cross-Entropy
• Predict probabilities with for classes

• Softmax function gives the correct mapping:
• Quantify likeliness of target and prediction with a goodness-of-fit test

• e.g. Kullback-Leibler distance
• … roughly equivalently: cross entropy

• Put this all together and you get the Cross Entropy Loss for target t and
prediction s

̂yi ∈ [0,1] ΣC
i ̂yi = 1 C

13

̂yi = f (⃗s)i =
esi

∑C
j sj

D(t(x), p(x)) = Σxt(x)log
t(x)
p(x)

H(t(x), p(x)) = − Σxt(x)log p(x)

L(⃗t , ⃗s) = −
C

∑
i

witi log
esi

∑C
j sj

Activation Functions
• Without activation functions or linear

• Non-linear function needed and we want them to be differentiable,
commonly used ones are

⃗σ ⃗σ(∝ ⃗x)

⃗ ̂y = … ⃗σ(2) (W(2) ⃗σ(1) (W(1) ⃗σ(0) (W(0) ⃗x + b(0)) + b(1))…) → ⃗̂y = Weff ⃗x

14

Discussion of Activation Functions
• Sigmoid historically used a lot because maps

, useful for probabilities
• But vanishes for small

and large values
• Tanh maps , useful for classification, better

than sigmoid in many cases
• But still gradient can approach zero and

computationally quite expensive
• Both: Lead to static behavior at large and small inputs

ℝ → (0,1)
dσ(x)/dx = σ(x)(1 − σ(x))

ℝ → (−1,1)

15

Minimal Amount of Non-linearity: ReLU
• Computationally simple and non-linear
• Threshold behavior

• Constant gradient of 1 for , never zero
• Gradient 0 for , unit dead

• Can be desired turning off unnecessary neurons
• Network can “get stuck”, neurons dying out

• ELU is one variant that fixes dying ReLU
• Also smooth transition at 0 and gives negative values

for negative inputs

x > 0
x < 0

16

17

Model Training

Gradient Descent
• How can we optimize the parameters of the

model to optimize the associated loss?
• Minimization problem, but the loss has

many parameters
• Start randomly, measure the local gradient, go

a step in direction of gradient, repeat!

 with learning rate

• Iterative numeric minimization of the loss

Wt+1 = Wt − α
∂L
∂W Wt

α

18

Stochastic and Batch Gradient Descent
• Computing the gradients and updating the model parameters is

computationally expensive
• Do it for each data point Stochastic: Noisy, fast convergence

• Only once for all data Batch Fluctuations average out,
big steps

• We call one full pass through all data (rather than a batch) an epoch

→
→ L := ⟨L⟩batch

19

Backpropagation
• How do we get the gradient with respect to the model parameters?
• Remember we have chosen all ingredients to be differentiable. So we

can just apply chain rule!

• No additional parameters needed!
• Implemented as exact “automatic differentiation” , e.g. Autograd

20

L ↔
∂L
∂w1

=
∂L
∂ ̂y

∂ ̂y
∂σ

∂σ
∂Σ

∂Σ
∂w1

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Optimizer
• Backpropagation and Gradient Descent are the backbone of model

training
• Learning rate and extensions with other parameters need to be set
• All together is called the optimizer

• But real Loss Landscapes can get quite complicated, there can be
• Plateaus
• Local minima
• Fluctuations
• Narrow spikes and minima

→ ∂L = 0
→ ∂L = 0

21

L(ω)

ω

Optimizer Optimization — Adaptive Learning
• Individual parts of the network might learn

different things and therefore benefit from
individual learning rates

• Measure the variance of all local gradients
accounted

• And reduce learning rate when variance is high
• Put more emphasis on features containing

important information
• Implemented in Adagrad

22

Δt = α
∂L
∂W Wt

vt = ∑
t

(∂L
∂W Wt

)
2

ϵ > 0 for stability

α → αt =
α

vt + ϵ

https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html

Optimizer Optimization — Adaptive Learning
• Might lead to very small learning rates over time

when grows indefinitely
• Try regularizing with a moving average

• Not full history, but at least previous cycle

• Implemented in RMSprob

vt

23

vt = ρvt−1 + (1 − ρ)(∂L
∂W Wt

)
2

with 0 < ρ < 1

https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html

Optimizer Optimization — Adding Momentum
• Often biggest improvements in the loss at the beginning
• Small local bumps and plateaus should not suddenly stop optimization

“in right direction”
• Keep some speed from the previous cycles

• Combine this with Adaptive Learning and you get Adam
• Most used optimizer in modern model training
• Always the first choice

β < 1

24

Δt = βΔt−1 + α
∂L
∂W Wt

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Learning Rate Decay
• Even with Adam optimization can circle around

minimum
• Reduce the learning rate according to some schedule

• Multiply by some every steps
• Check for plateauing loss with history of

last losses and reduce times
• …

• Tools often called Schedulers

ρ N

n k

25

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

The Symmetry Problem
• All weights are zero

• All activations are zero
• Gradients are zero

• Similar for setting all weights to same
constant

• Symmetries in weight matrix
 limit explorable

space
• Better: Random initialization

𝒮 W
𝒮W = W → 𝒮∂L ≈ ∂L

26

Xavier Initialization
• NNs are all about the weights

• Too large: Saturation
• Too small: Might get stuck

• In back-propagation the gradient tends to get smaller the deeper the
network

• Extensively studied: Glorot et al., arXiv:1502.01852
• Use the established defaults

• PyTorch even hides the functionality, so you don’t get easy access

27

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852

28

Data Everywhere

Input Data
• Data is the most crucial part of the neural

network training
• Biases that are in data will end up in the

model
• But also numerics and types of data play

a role

29

https://www.youtube.com/watch?v=tpOg87AQvbo

Data Normalization / Scaling
• Large input data might lead to vanishing gradients, saturation, numerical

instability, …
• Weights from left to right decrease

• What if large output data is expected?
• Weights from left to right have to increase

• Normalize data to same value range

• For outputs retransform f ′ → f = f ′ σ + μ

30

with μ =
1
m

m

∑ xif → f ′ =
f − μ

σ
, σ2 =

1
m

m

∑ (xi − μ)2 + ϵ

Batch Normalization
• Apply normalization batch-wise before each layer input

• Reduces sensitivity to initial weights
• Improves numerical stability

• But forces and

• Reintroduce sensitivity by reshaping the inputs
with learnable parameters and
• Allow the model to “learn it back”

⟨x⟩ = 0 σx = 1
̂xi′ = γ ̂xi + β

γ β

31

̂xi =
xi − μ

σ

Categorical Input Data
• Categorical flags can be easily mapped by integers

• But adjacent values do not carry additional info

• Create a vector with with one position equals 1 others 0:
One-hot encoding
• High-dimensional and sparse (mostly zeros), unrelated categories

• Make categories learnable with embedding layer
• Dimension of embedding vectors is a parameter
• Similar categories will end up with similar vectors

0c − 1c = 0c − 2c

d = Nc

32

Index Category Embedding
0 Red [0.12, 0.67, 0.21]
1 Blue [0.11, 0.68, 0.19]
2 Green [0.95, 0.05, 0.88]

Missing Input Data
• Input features might be missing in some data (not

every collision event contains a charged lepton)
• Train multiple networks

• Computationally expensive
• Less data for training of each

• Encode missing features in “default” values
• Capture additional information from the

absence of data
• Hard to define

Data Imbalance
• Data is not uniformly distributed

• One class more likely, peaked distribution
• Network will be less sensitive to regions/classes that are sparsely

populated
• Possible workarounds:

• Down-sampling: Remove some data from overly populated areas
• Collocation: Let training batches to be uniformly distributed
• Sample-weights: weight each data item to create uniformity

• Loss function implementations support this

34

35

Overtraining

Model Capacity and Capability
• Many free parameters leads to high capacity

• With enough parameters, any data can be fitted
• “Memorize the data”, no generalization! Overtraining

• Too few parameters will
restrict capability
• The model cannot

capture the complexity
• Luckily, with NNs we don’t

need to restrict ourselves

→

36

5.2 Deep Learning and Neural Networks

the backpropagation algorithm as before (Equation 5.13), the weight update rule is amended to

wi,t+1 = wi,t � h ·
1q

vi,t/(1 � bt
2) + e

·
mi,t

1 � bt
1

, (5.17)

with bt
1,2 decreasing over time and a small number e for numerical stability. If one imagines the

loss function as a high-dimensional surface, the ADAM update rule can be perceived as an object
descending along the surface with momentum and friction. The algorithm yields faster global
convergence [201] and is less sensitive to perturbations due to local minima.

Overtraining suppression
Overtraining occurs when the dataset used for training is an insufficient representation of the
underlying, general probability distributions, either due to a bias in the selection of examples,
or owing to a limited amount of statistics, while the capacity of the network is sufficiently large
to learn characteristic, but non-representative features. Sophisticated applications require net-
works to find complex inner representations in data and hence, rely on an appropriate model
that involves a considerable amount of free parameters. This trade-off situation is illustrated in
Fig. 5.4. The neural networks developed in this analysis employ two methods for overtraining
suppression, which are described in the following two paragraphs.

x

y

x

y

x

y

f (x) = pol(1) f (x) = pol(3) f (x) = pol(8)
Underfitting Appropriate capacity Overfitting

y(x) = pol1(x) y(x) = pol3(x) y(x) = pol8(x)

x x x

y y y

Figure 5.4: Illustration of model capacity, under- and overfitting. Given a set of examples (xi,
yi), a model with too few parameters is an insufficient representation of the data (left), while
a too complex model is prone to fluctuations, might not generalize, and requires measures for
suppressing overtraining (right). While a model with an appropriate capacity (center) appears
reasonable, it might not be able to find complex inner representations of the input data.

In overfitting scenarios such as depicted in Fig. 5.4, weights of trained networks tend to take
on large values, both positive and negative, to compensate for local fluctuations in a statistically
non-representative input space. In order to retain the network’s size and thus, its ability to
model complex representations, the loss function can be extended to penalize large weights
during training. This method, called L2 regularization, adds a term

L2 = l Â
i

w2
i (5.18)

to the loss function, which is mediated by a hyperparameter l. Therefore, the training procedure
minimizes the objective function defined by the task to be accomplished, while simultaneously
avoiding excessively large weights. Bias weights are usually excluded in this approach.

Another approach for overtraining suppression is random unit dropout. It prevents networks
from developing a too strong reliance on particular units during training but rather distribute
the dependence among a statistically reliable amount of units. Given a customizable dropout
rate r 2 [0, 1), unit outputs are randomly set to zero during training with a probability of r. As

71

"truth""truth" "truth"

Regularization
• Often volatile behavior or large values alternations are necessary

• Some weights need to become larger than others
• But we want to do this moderately

• Regularize the loss with penalty term or

• If really needed the training will slowly enforce higher weights
• Tuning the mediator can help

L1 = ΣWwi L2 = ΣWw2
i

λ

37

Ltot = L + λL1/2

Dropout
• When one weight becomes large, others might

adapt
• Restrict “undesired reliance” of weights on

each other by stochastically switching parts off
• Randomly turn off neurons with probability

 during processing

• Scale up next neurons inputs by
to account for missing neuron

• Next iteration pick different neurons

p
1/(1 − p)

38

Validation and Test
• How can we be sure we are not screwing up? Validate!
• Test performance of your NN on independent validation data

• If loss diverges, the model overtrains
• Guides the selection of the model

• Also keep another independent set of
 test data for final true measure of
generalization
• Overall reduction of data for

training

39

Early Stopping
• Simplest method to fight overtraining
• Stop as soon as validation data reliably shows no improvement or

overtraining
• Or as soon as generalization error becomes too large

• Pick the model that has performed
the best on validation data

40

Cross Validation
• Splitting the available data when it is sparse can be painful

• We can trade data (use all data for training and validation) against
compute time

• k-fold cross validation
• Split data into sub-samples (folds)
• Train on , validate on remaining
• Rotate folds and repeat (total times)
• Average the performance across all folds

• Also reduces dependence on train/validation split

k
k − 1

k

41

42

Other Optimizations

Miscellaneous Optimizations
• More data
• Data augmentation (more data and free, but situational)
• Noise injection (can be more data, but loss in performance)
• Ensemble training (averaging over many networks)
• Model parameter reduction

• Pruning (Features & Parameters)
• Shared Parameters (i.e. CNNs, Transformer)

43

Hyper-Parameters
• Many parameters introduced to the various building blocks of a model

• Architecture: number of layers & nodes per layer; types of layers,
batch normalization; activation; weight initialization

• Optimizer: learning rate , momentum , decay
• Training: Batch size, folds, splitting fractions, regularization, dropout

• Some have well tested defaults
• Some are independent and can be optimized individually
• Remainders have to be optimized simultaneously

α β ρ

44

Hyper-Parameter Optimization
• Many approaches exist to explore hyper-

parameter space
• Random search
• Grid search
• Bayesian optimization

• Overall a very brute-force and expensive
procedure but sometimes necessary
• Definitely necessary for highest

performance

45

Remark: Resource Availability & Optimization
• Training (and evaluating) NNs is computationally expensive

• Data needs to be stored and moved
• A ton of algebraic operations are performed
• Similar amount of gradients are calculated

and parameters updated
• Repeated many times

• Software and hardware ensure efficient processing
• But hardware is expensive, and running it energy intensive

• Think twice before you heat someone’s server! Be resource-efficient!

46

DOI:10.1049/cdt2.12016

47

Finally, some hands-on

ALSO YOU

NNs as Industry Standard
• Wide and active community develops

standard tools, e.g. PyTorch, tensorflow, …
• Standard features already

implemented
• Optimized computation, memory

consumption, data handling
• Collaborative development and usage of

common open tools enabled the recent
success of ML

48

https://pytorch.org/docs/stable/index.html
https://www.tensorflow.org/learn

PyTorch
• You will continue using PyTorch for the exercises

• It has become the most widespread tool for ML applications
• Benefit from the work of the community and be a part of it!

49

https://pytorch.org/

Today’s exercise
• Will depend on the previous exercises, we will continue there
• Open the DNN4HEP_exercise.ipynb notebook, also uploaded on the

Indico, in Google Colab
• There are code blocks marked with

Ignore them on your first pass!

• The instructions should be self-explanatory. If not, feel free to ask!
• Have fun!

50

This is for the Mastering Model Building exercise. Skip this block in your first pass!

https://github.com/els285/Aachen_Intro2NN/blob/main/Exercises/DNN4HEP_exercise.ipynb

