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How to fail
Mastering Model Building many times
Maximilian Horzela, Markus Pirke and eventua”y succeed

shamelessly stolen from
Much of the material heawviy-taspired-by Marcel Rieger, ChatGPT, "Deep learning in Physics Research", Erdmann et al.


https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
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Complexity of Artificial Neural Networks (ANNSs)

e NNs are not complicated .2 (1o Pvonced Calodus
e But complex N
l J)(zo!ngx <
60"“):% ;vl%&mome}v(c \A‘
e Well suited for complex tasks with = EEY (. ' ek
4
multivariate dependencies o Geomelry
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e Most challenges with NN models S . <11 o Bosic Operations
. l ’ Numben & Counk;mg
related to complexity 123
A. Computational complexity Prmoy  High  Upiversty  Job

B. Problem complexity Stage ofLife—
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https://www.youtube.com/watch?v=xg4bIeJTVF0
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What are NNs practically?

A. NNs are directed weighted graphs of
neurons that perform a mapping

e Tensors model the network of nodes
and edges

e Tensor operations define mathematical
dependencies between tensors

B. NNs are typically multiple layers of
neurons, each layer chosen for a
(specific) purpose
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(Deep) Neural Networks

$= +0(2) <W(2)3<1> <W<1>5<o> <W<0>55 + b(0>> " b<1>>”'>
Inputs X Ch°‘¢9 - s’
Weight matrices W;) Trainable N éf
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G Activation Functions o;, )
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EXPERIMENT

Machine Learning = NNs

Optimization of model parameters with
respect to an objective

Challenge: Many free parameters for a
statistical fit N(param) 2> N(data)
Solution:

e Exploit analytical differentiability at
high granularity of NNs

e Efficient numerical optimization
techniques

MACHINE 2\
LEARNING ﬁ‘ » COMPUTER

L .
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| STATISTICS
W 2 (Y 1
Whatstheihelllisithis?



Building Blocks, Again, but with More Detalil

0000 — @
0000 :V/’\\\// C

h VA
v\

NA

/4 \/\ //\\ :

. o

l

i W\, — Ta\




GEORG-AUGUST-UNIVERSITAT = AU . §
@\GOTHNGEN |n|:/=\\ % ﬁlm “ﬁNST

Objective Functions

e Define your model’s task and how it learns
e Reinforcement Learning: Reward
e Regression: Difference between model
prediction and target
e Classification: Metric of similarity or
distance

e Often heavily inspired by traditional
statistical methods

10
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Regression

e Find the set of model parameters that leads to a prediction that is as
close as possible to a target
e Minimize the (absolute) difference between prediction and target
e Many differentiable candidates available

Mean Squared Error 1 . o :
q NZ (5= 9:)° Smooth Sensitive to outliers

(MSE) i+1
Mean Absolute Error ii [52=5
(MAE) NG

N MSE for small, MAE Computational
Log-Cosh L I b (i =i |
N _ Requires choices
.I L P = A,’ , -1 P = Ai N h . ’

11

Robust to outliers  Constant gradients
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Classification = Categorical Targets

e C(lassification targets different categories that can be labelled with
discrete values

e But no information in absolute values
o Differences (y; — y;) don’t work

e For two classes we want that something is either cat/“signal”/1 or
dog/“background”/0
e But this is maybe too simplistic/idealistic
¢ |nstead let’s think in probabilities

12
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Cross-Entropy

o Predict probabilities y; € [0,1] with ZZ.CAZ- = ] for C classes

Si

e Softmax function gives the correct mapping: 3 =/G);= —

e Quantify likeliness of target and prediction with a goodneéssfof—fit test
e e.g. Kullback-Leibler distance D(t(x),p(x)) = th(X)log%
e ... roughly equivalently: cross entropy H((x), p(x)) = — Zr(x)log p(x)

e Put this all together and you get the Cross Entropy Loss for target t and

prediction s ¢

Si
C
Zj Sj

C
L(7,5) = — Z wit; log
i

13
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Activation Functions

e Without activation functions & or linear 6( & X)

e Non-linear function needed and we want them to be differentiable,

commonly used ones are  gigmoid ‘ tanh ‘
o(z) = e tanh(z) g
ReLU / ELU J
0 T x>0
maX( 7x) _ ) {a(ex -1) z<0 - - o

14
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Discussion of Activation Functions

e Sigmoid historically used a lot because maps
R — (0,1), useful for probabilities

e Butdo(x)/dx = o(x)(1 — o(x)) vanishes for small
and large values
e Tanh maps R — (—1,1), useful for classification, better
than sigmoid in many cases

e But still gradient can approach zero and
computationally quite expensive

e Both: Lead to static behavior at large and small inputs

15
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Minimal Amount of Non-linearity: ReLU

e Computationally simple and non-linear
e Threshold behavior

e Constant gradient of 1 for x > 0, never zero

e Gradient 0 forx < 0, unit dead

-10
e Can be desired turning off unnecessary neurons

e Network can “get stuck”, neurons dying out
e ELU is one variant that fixes dying ReLU

e Also smooth transition at 0 and gives negative values
for negative inputs

10,

10

16
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Model Training




GEORG-AUGUST-UNIVERSITAT EAU N N
< A, GOTTINGEN & o |n|:/=\\ @ EAXP-IE-RII\ﬁ NST

Gradient Descent

e How can we optimize the parameters of the
model to optimize the associated loss?

¢ Minimization problem, but the loss has
many parameters

L

e Start randomly, measure the local gradient, go
a step in direction of gradient, repeat!

Wo,=W- a—W . with learning rate o
t

e |terative numeric minimization of the loss
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Stochastic and Batch Gradient Descent

e Computing the gradients and updating the model parameters is
computationally expensive

e Do it for each data point — Stochastic: Noisy, fast convergence

e Only once for all data — Batch L := (L), .., Fluctuations average out,

b | g Ste p S Batch Gradient Descent Stochastic Gradient Descent Mini-Batch Gradient Descent

e We call one full pass through all data (rather than a batch) an epoch

19
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Backpropagation

e How do we get the gradient with respect to the model parameters?

e Remember we have chosen all ingredients to be differentiable. So we
can just apply chain rule!
b

OL 0L 39 do 0%

() () 7 T H e om

e No additional parameters needed!

e Implemented as exact “automatic differentiation” , e.g. Autograd

20


https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
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Optimizer

e Backpropagation and Gradient Descent are the backbone of model
training
e Learning rate and extensions with other parameters need to be set
e All together is called the optimizer

e But real Loss Landscapes can get quite complicated, there can be

e Plateaus — 0L =0 Liw)

A
e Local minima — 0L =0

e Fluctuations

Plateau

e Narrow spikes and minima

e"

Global

Local minimum .
minimum

21
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Optimizer Optimization — Adaptive Learning

Individual parts of the network might learn A — aa—L
different things and therefore benefit from T oW lw,
individual learning rates 5
Measure the variance of all local gradients y, = Z (6_L >
accounted ow lw
And reduce learning rate when variance is high a

. . . —_ o
e Put more emphasis on features containing @ = &

important information
Implemented in Adagrad e > 0 for stability

\/Vt+€

22


https://pytorch.org/docs/stable/generated/torch.optim.Adagrad.html
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Optimizer Optimization — Adaptive Learning

e Might lead to very small learning rates over time
when v, grows indefinitely o )
e Try regularizing with a moving average v, =pv,_ |+ —p)| —
. . ow lw,
e Not full history, but at least previous cycle
with 0 <p <1

e Implemented in RMSprob

23


https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
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EXPERIMENT

Optimizer Optimization — Adding Momentum

e Often biggest improvements in the loss at the beginning

e Small local bumps and plateaus should not suddenly stop optimization

“in right direction”

oL
e Keep some speed ff < 1 from the previous cycles A, = SA,_| + a—

ow
e Combine this with Adaptive Learning and you get Adam
e Most used optimizer in modern model training
e Always the first choice

W,

24


https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Learning Rate Decay

e Even with Adam optimization can circle around
minimum
e Reduce the learning rate according to some schedule
e Multiply by some p every N steps
e Check for plateauing loss with history of
last 71 losses and reduce k times

e Tools often called Schedulers



https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
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The Symmetry Problem

e All weights are zero
e All activations are zero
e Gradients are zero

e Similar for setting all weights to same
constant

e Symmetries & in weight matrix W

SW =W — §SIL ~ JL limit explorable
space

e Better: Random initialization

v

4

o "‘(

L

WEIGHTS WITH ZERO
MY NETWORK

WHY IS MY TRAINING
NOT CONVERGING?-

26
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Xavier Initialization

e NNs are all about the weights
e Too large: Saturation
e Too small: Might get stuck

e In back-propagation the gradient tends to get smaller the deeper the
network

e Extensively studied: Glorot et al., arXiv:1502.01852
e Use the established defaults
e PyTorch even hides the functionality, so you don’t get easy access

27


https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852
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Input Data

e Data is the most crucial part of the neural
network training

e Biases that are in data will end up in the
model

a role



https://www.youtube.com/watch?v=tpOg87AQvbo
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Data Normalization / Scaling

e Large input data might lead to vanishing gradients, saturation, numerical
instability, ...

e Weights from left to right decrease
e What if large output data is expected?

e Weights from left to right have to increase
e Normalize data to same value range

f—n I < 1 X 2
- ' = 1th = — ., 07 =— xl.— + €

o
e For outputs retransform ' — f = f'oc + u

30
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Batch Normalization

e Apply normalization batch-wise before each layer input X, =
e Reduces sensitivity to initial weights
e |Improves numerical stability

e Butforces (x) =0 ando, =1

e Reintroduce sensitivity by reshaping the inputs X,/ = yX; +
with learnable parameters y and 3
o Allow the model to “learn it back”

o

31
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Categorical Input Data

e Categorical flags can be easily mapped by integers

e But adjacent values do not carry additional infoO, — 1, =0, — 2,

e Create a vector with d = N, with one position equals 1 others O:
One-hot encoding

e High-dimensional and sparse (mostly zeros), unrelated categories

e Make categories learnable with embedding layer [ I

Red [0.12, 0.67, 0.21]
e Dimension of em ing v rs i ram r_
ension of embedding vectors is a paramete e OHENGIEENGHE]

e Similar categories will end up with similar vectors pR Green  [0.95, 0.05, 0.88]

32
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Missing Input Data

¢ |nput features might be missing in some data (not
every collision event contains a charged lepton)

e Train multiple networks
e Computationally expensive
e Less data for training of each
e Encode missing features in “default” values

e Capture additional information from the
absence of data

e Hard to define —

o—

-\

P

%\/
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Data Imbalance

e Data is not uniformly distributed
e One class more likely, peaked distribution

e Network will be less sensitive to regions/classes that are sparsely
populated

e Possible workarounds:
e Down-sampling: Remove some data from overly populated areas
e Collocation: Let training batches to be uniformly distributed
e Sample-weights: weight each data item to create uniformity
e Loss function implementations support this

34
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Model Capacity and Capability

e Many free parameters leads to high capacity
e With enough parameters, any data can be fitted
e “Memorize the data”, no generalization! — Overtraining

e Too few parameters wi ill Underfitting Appropriate capacity Overfitting
restrict capability y(x) = poly () y(x) = pols () y(x) = polg(x)

e The model cannot
capture the complexity ¥

e Luckily, with NNs we don’t
need to restrict ourselves

36
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Regularization

e Often volatile behavior or large values alternations are necessary
e Some weights need to become larger than others
e But we want to do this moderately

e Regularize the loss with penalty term L; = 2y,w, or L, = Zle.z

Lo=L+ ALy,

¢ |f really needed the training will slowly enforce higher weights
e Tuning the mediator A can help

37
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Dropout

e When one weight becomes large, others might
adapt

e Restrict “undesired reliance” of weights on
each other by stochastically switching parts off

e Randomly turn off neurons with probability
p during processing

e Scale up next neurons inputs by 1/(1 — p)
to account for missing neuron

e Next iteration pick different neurons
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Validation and Test

e How can we be sure we are not screwing up? Validate!
e Test performance of your NN on independent validation data
e |f loss diverges, the model overtrains

e Guides the selection of the model
e Also keep another independent set of
test data for final true measure of
generalization
e Overall reduction of data for
training

loss

overtraining

= |

training set

generalization error

>

training iterations

39
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Early Stopping

e Simplest method to fight overtraining

e Stop as soon as validation data reliably shows no improvement or
overtraining

e Or as soon as generalization error becomes too large
A

generalization error overtraining

training set

>

e Pick the model that has performed
the best on validation data

loss

training iterations

40
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Cross Validation

e Splitting the available data when it is sparse can be painful
e We can trade data (use all data for training and validation) against

Compute t|me Validation Training
. . Fold Fold
e k-fold cross validation _
1st —» Performance
e Split data into k sub-samples (folds) ot [T —s e
e Train on k — 1, validate on remaining 3 [ _JIL__]— rerormonces |- pertormance

1

. =73 f’Zl;’erformance‘
e Rotate folds and repeat (total k times) an [T T T ]—» perormance | —° 5
e Average the performance across all folds stn [T T T [ rerormonces
e Also reduces dependence on train/validation split

K lterations (K-Folds)

41
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Miscellaneous Optimizations

e More data
e Data augmentation (more data and free, but situational)
e Noise injection (can be more data, but loss in performance)
e Ensemble training (averaging over many networks)
e Model parameter reduction
e Pruning (Features & Parameters)
e Shared Parameters (i.e. CNNs, Transformer)

43
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Hyper-Parameters

e Many parameters introduced to the various building blocks of a model
e Architecture: number of layers & nodes per layer; types of layers,
batch normalization; activation; weight initialization
e Optimizer: learning rate @, momentum /3, decay p
e Training: Batch size, folds, splitting fractions, regularization, dropout
e Some have well tested defaults
e Some are independent and can be optimized individually
e Remainders have to be optimized simultaneously

44
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Hyper-Parameter Optimization

e Many approaches exist to explore hyper-
parameter space

e Random search
e Grid search
e Bayesian optimization
e Overall a very brute-force and expensive
procedure but sometimes necessary

o Definitely necessary for highest
performance

Happy with
your model's
performance?

But what if you try
0.01 as learning rate?

45
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Remark: Resource Availability & Optimization

e Training (and evaluating) NNs is computationally expensive

Inception-v4

e Data needs to be stored and moved 1 cenionss @)
e Aton of algebraic operations are performed o
e Similar amount of gradients are calculated 0t

and parameters updated | @ o G L L L
e Repeated many times P o

40

e Software and hardware ensure efficient processing ™° ° * *  2.&. * °*
e But hardware is expensive, and running it energy intensive
e Think twice before you heat someone’s server! Be resource-efficient!

46
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NNs as Industry Standard

e Wide and active community develops
standard tools, e.g. PyTorch, tensorflow, ...

e Standard features already
implemented

e Optimized computation, memory
consumption, data handling

e Collaborative development and usage of

common open tools enabled the recent YOU know, | m sg'methlng

success of ML ofga data SCIentISt myself

N\

48


https://pytorch.org/docs/stable/index.html
https://www.tensorflow.org/learn
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PyTorch

e You will continue using PyTorch for the exercises

100%
@ Other languages and frameworks
@ PyTorch
© TensorFlow
® JAX
L MXNet
5 @ PaddlePaddle
& torch
5 @ Caffe2
£ @ MindSpore
5 50%
£
5
L
2
w
25%
0%

Mar 21 Jun21 Sep21 Dec21 Mar 22 Jun22 Sep 22 Dec 22 Mar 23 Jun23 Sep 23 Dec23 Mar 24 Jun24 Sep 24 Dec 24 Mar 25

e |t has become the most widespread tool for ML applications
e Benefit from the work of the community and be a part of it!

49


https://pytorch.org/
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Today’s exercise

e Will depend on the previous exercises, we will continue there

e Open the DNN4HEP_exercise.ipynb notebook, also uploaded on the
Indico, in Google Colab

e There are code blocks marked with
[This Is for the Mastering Model Building exercise. Skip this block in your first pass!

Ignore them on your first pass!

e The instructions should be self-explanatory. If not, feel free to ask!
e Have fun!

50


https://github.com/els285/Aachen_Intro2NN/blob/main/Exercises/DNN4HEP_exercise.ipynb

