

Belle II detector alignment with Millepede II

Tadeáš Bilka^{1*}

¹DESY, Hamburg

for the Belle II Collaboration

Scientific Computing Seminar

Friday Dec 6, 2024, 2:00 PM \rightarrow 3:00 PM Europe/Berlin SR 2

* tadeas.bilka@desy.de tadeas.bilka@gmail.com (always online :-)

- Upgrade of KEKB & Belle, taking physics data since 2019
- Worlds' highest luminosity electron-positron collider (KEK, Tsukuba, Japan) at Upsilon(4S) resonance → B physics, D physics, tau physics ...

Past, Present, and Future

Systematic errors will start to dominate measurement precisions for many analyses

Precision @ Belle II

Just two examples...

Alignment precision at level of micrometers needed

> Advanced track-based (time-dependent) alignment

Detection elements not in assumed positions/orientations/...

Estimate the geometry directly from the trajectories \rightarrow minimize many millions of residuals!

$$\chi^2(\boldsymbol{a},\boldsymbol{q}) = \boldsymbol{r}^{\mathsf{T}}(\boldsymbol{a},\boldsymbol{q})\boldsymbol{V}^{-1}\boldsymbol{r}(\boldsymbol{a},\boldsymbol{q}) \quad \text{\rightarrow min}$$

C)

- Weak Modes
 - (some) data not sensitive to (some) deformations

- Detector&reco model issues
 - e.g. imperfect magnetic field description

- Time-dependence
 - Detector not stable, many effects at play

Belle II Alignment Parameters: Local Alignment

Belle II Alignment Parameters: Global Alignment

Relative positions of sub-detectors and larger structures*

Problem: Correlations with local alignment and correlations of different sub-detectors!

Alignment of all degrees of freedom should be done simultaneously

*Redundant DoFs removed by linear equality constraints

https://www.terascale.de/wiki/millepede_ii/ https://helmholtz.software/software/millepede-ii

*Using 10 cores @ Xeon(R) CPU E5-2640 v3 @

2.60GHz. 20GB of memory required.

40

45

Hadronic events

Cosmic events (merged tracks)

+ off-IP events for data

General Broken Lines (GBL) Track model with proper description of multiple scattering

Rich topology of data samples helps to reduce weak modes

Di-muon events

(with IP constraint)

Recorded during collisions

Reducing weak modes with rich track topology

Weak Modes in Prompt Alignment (without wires and IPdimuons)

Full scale MC tests with misaligned wires Belle T

Black: initial realistic misalignment

Red: remaining residual misalignment

Can recover from a realistic wire misalignment to negligible residual misalignment in a single iteration!

ш

Backward Forward

50

Backward

Backward

Forward

80

Forward

100 150

[deq]

100 120

R [cm]

Residual wire misalignment in MC

Only 20% randomly selected wires shown

Cosmic Validation with PXD+SVD+CDC

Helix Parameter Resolutions abs(Z01)>0.5 && abs(Z01)>0.5 && abs(Z02)>0.5 && Pt1>0.6 &&Pt2>0.6"

16

B Impact Parameter Resolutions

selection="abs(Z01)>0.3&& abs(Z02)>0.3"

Less than 15%/10% difference in d_0/z_0 remains. Remaining Data/MC difference mainly due to too optimistic SVD resolution in (old) MC and residual time-dependencies.

Correlation of helix parameter biases: MC vs proc12

Correlation of helix parameter biases: Conservative misalignment

Belle II

Old prompt alignment vs MC with misalignment = largest misalignment scenario (of 4) used for alignment systematics estimation by physics analyses

Validation with Dimuons: Angular dep. of vertex resolutions

MC features well reproduced, resolutions only a bit worse for data.

Offset in d_o resolution related to (old) optimistic SVD simulation

Angles for positive-charge muon candidate

Vertexing systematics for dimuons

PXD Alignment evolution in exp12 reprocessing

Even with this granularity (about 0.1/fb), alignment sometimes not fast enough to follow all movements

In U-direction, the remaining effects seem negligible

V-direction is worse and forward sensor more affected (due to track&detector topology)

Correlations of residuals

prompt

PXD Alignment evolution in exp12 reprocessing

PXD sensors 2.5.1 vs. 2.5.2

Belle II PXD

Experiment 12 Run 3496 - 3745 alignment corrections × 100

*Differences to first exp12 alignment shown in animation

https://www.dropbox.com/scl/fi/v6pe79t07vr974jxa6ct9/pxd_exp12.gif?rlkey=18w7r00j3qgInpyu4vsmr7yrj&st=6eb6je68&dl=0

Real shape of the PXD2 (sensitive areas)

as determined by the alignment during commissioning (B=0T cosmics)

Alignment & Performance with cosmics & B=0T

- Observed (also) very fast bowing-like deformations correlated to beampipe temperature ← depends on beam currents
- Would need much more data for alignment

SVD track

Λz

PXD2 ladder bowing amplitude in different 2024 periods

- Precise alignment required for precision physics
- Belle II alignment determines about 60k parameters for pixel and strip detectors and the drift chamber promptly after data-taking
 - CDC layers and PXD&SVD hafl-shells and individual PXD sensors are aligned about every 50k di-muon events (+some cosmics) → once in several hours (depending on lumi)
- Alignment performance pretty good in MC simulations and data validations
 - Some remaining discrepancies related residual time dependence and to imperfect magnetic field description or other detector modelling defficiencies
 - Data-driven conservative misalignment scenario available for systematics estimation in physics analyses
 + one more data-driven (from day-to-day alignment differences) + 2 MC-based (residual misalignments)
- New challenges with new PXD
 - Need much "faster" alignment if the beam conditions keep changing frequently
 - But not all data available at the calibration site
 - Alignment already takes ¹/₄ to ¹/₂ a day (multiple passes over data needed)
 - Possible solutions
 - Much more data for alignment \rightarrow expensive
 - Alignment on GRID? (Need high-performance high-memory machine processing data after each collection step)
 - "Parametrize" deformations with less degrees of freedom → maybe not feasible (work in progress)
 - Ignore (flag bad quality vertex data ...)

Thank you for your attention!

BACKUP

$\sum_{Belle II} KEKB \rightarrow SuperKEKB$

Run dependence of vertex parameter biases and resolutions with dimuons

Residual SVD time-dependence after major events

It seems the major remaining bias comes from a "typical" deformation in **SVD**: Not corrected, because SVD sensors are aligned once per bucket (shells each run)

Big step upwards in CDC deformation – VXD follows, but something more happens for SVD.

This is followed by continuous relaxation over several days... bad!!

Looks a bit like ladders shifting in z (5-10um in L3, maybe 20um in L4+, but not consistently

Alignment basics: residuals

Integrated over all PXD/SVD sensors and mumu_tight skim files used for exp12 alignment validation

Much larger discrepancy for "u" probably comes from SVD

Intrinsic SVD sensor resolutions too optimistic on older MC – new MC simulation will address this

Cannot be caused by any kind of misalignment (confirmed)

Charge-dependent momentum biases for cosmics

not charge-dependent

General small (<10⁻³) problems with momentum biases (also vs. phi) might be related to compensation of problems beyond alignment (magnetic field / deformed CDC endplates / ...). Difficult to fix at alignment level (need better detector model). Solution: cos(theta) but also phi- and charge-dependent (sagitta) momentum corrections at analysis level. It seems there is a residual twist caused by compensation of some inconsistencies (deformed CDC-endplates/ magnetic field description/?)

Belle II Calibration and Data Production

- Physics data calibrated in prompt calibration loop every bucket
 - Done at BNL
 - About a month after data
- Recalibration
 - KEKCC or NAF
 - After a year or two, all data when needed
 - Fix issues, improve...

Bucket = several weeks of datataking (scaled to about 10/fb) Alignment: aim to provide the best possible performance for physics already in prompt calibration

General Broken Lines

- > Track model with proper describtion of multiple scattering
- Track constructed from measurement and scattering points kink interpolation
- PHYSICS AT THE TERA SCALE
- \rightarrow Integrated into GENFIT2 package

 \rightarrow Profits from generic treatment of many different measurement types \rightarrow Advanced treatment of material for multiple scattering estimation (thick scatterers)

- > User has to provide at each point:
 - Residuals, measurement errors, projections from track coords. \rightarrow measurement coords.
 - Jacobians of propagation between adjacent points
 - Scattering errors at scatterers; derivatives of residuals w.r.t. align. params (for MP2)
- > Track described by change of curvature and kinks at scattering points

Performance with cosmics & B=0T (PXD2) Belle II

From T. Wilczeck (PRG)

