Investigation of a Data-Driven Fast Simulation Algorithm for AHCAL Test Beam Data with the Discrete Cosine Transform

André Wilhahn

II. Physikalisches Institut, Georg-August-Universität Göttingen Supervised by Stan Lai

December 11th, 2024

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform
- 3. Transformation of Hit Energies
- 4. Conclusion

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform
- 3. Transformation of Hit Energies
- 4. Conclusion

Motivation

- Want to develop data-based fast simulation algorithm for hadron showers
- Decreased computation time as well as storage requirements
- Possible to simulate as accurately as full simulation (or even better)?
- Fast simulation based on pion shower test beam dataset from June 2018 \Rightarrow "Confined" to test beam conditions
- Combine with full simulation for more general test beam conditions
- Different approaches:
 - 1. Fast simulation with discrete cosine transform by myself
 - 2. Distance-based sorting algorithm by Zobeyer Ghafoor (next talk)

Introduction

Longitudinal Simulation with Kernel Density Estimators

- Used Kernel Density Estimators for longitudinal simulation of pion showers
- Data and simulation in very good agreement
- Also developed inter- and extrapolation algorithms for longitudinal PDFs
- Want sooner or later also simulate:
 - 1. on hit level (also done by Zobi)
 - 2. timing
 - 3. under different incident angles
 - 4. different particles (briefly touched upon for Bachelor's thesis last summer semester)

5. ...

Compressing Test Beam Data?

- So far: **longitudinal** simulation with **Kernel Density Estimators**
- AHCAL has $24 \times 24 \times 38 = 21\,888$ readout channels
- If describing positions relative to centre of gravity and shower start, then technically 47 × 47 × 38 = 83 942 channels in analysis
 ⇒ Too much for KDEs
- Goal thus: reduce ("compress") number of values to more manageable size for hit-wise simulation

Centre-of-Gravity Cuts

- Centre of gravity on average close to detector center
- \bullet Only consider events with CoG within 8×8 block around detector center
 - \Rightarrow Reduces input values to $31 \times 31 \times 38 = 36518$ (still too much for KDEs)

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform
- 3. Transformation of Hit Energies
- 4. Conclusion

Discrete Cosine Transform

- Consider 1D-array of N real numbers: $\{x_0, x_1, ..., x_{N-1}\}$
- Discrete Cosine Transform (DCT) will transform these N real numbers into another set of N real numbers: $\{X_0, X_1, ..., X_{N-1}\}$, where

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right]$$

• DCT has exact inverse defined as

$$x_n = \frac{2}{N} \left(\frac{1}{2} X_0 + \sum_{k=1}^{N-1} X_k \cos\left[\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right] \right)$$

Discrete Cosine Transformation

- Split three-dimensional hit distributions into single cosine waves
 ⇒ In principle real Fourier transform
- Transformed values quantify how strongly specific cosine nodes are represented in original PDF
- AHCAL has three dimensions
 ⇒ Use three-dimensional DCT
- If blue curve was hit distribution, expect cosine nodes to fall off towards edge of layer

Two-Dimensional Discrete Cosine Transform

- From left to right: lowest to highest x-node
- From top to bottom: lowest to highest y-node
- Superpositions of x- and y-nodes
- High (white) and low (black) intensities
- Expect combinations with odd-numbered nodes to vanish
 - \Rightarrow Correspond to energy increases at edges of active layers

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform
- 3. Transformation of Hit Energies
- 4. Conclusion

Complexity of Discrete Cosine Transform

- One-dimensional DCT requires $\mathcal{O}(n^2)$ operations: n outputs, each of which requires a sum over n terms
- Becomes even worse for AHCAL test beam data in three dimensions \Rightarrow Runtime $\sim \mathcal{O}(n^6)$
- Fast Fourier Transform (FFT) comes into play which has runtime of $\mathcal{O}(n \log n)$ \Rightarrow Technically Fast Cosine Transform (FCT), but mathematics between FFT and FCT are equivalent

Radix-2 Decimation-in-time FFT (Cooley-Tukey Algorithm)

• DFT defined as:
$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}nk}$$
 with $k = 0, 1, ..., N-1$

• Split sum into two sums running over even/odd indices, respectively:

$$X_{k} = \underbrace{\sum_{m=0}^{\frac{N}{2}-1} x_{2m} e^{-\frac{2\pi i}{N/2}mk}}_{\text{even-indexed part } E_{k}} + e^{-\frac{2\pi i}{N}k} \underbrace{\sum_{m=0}^{\frac{N}{2}-1} x_{2m+1} e^{-\frac{2\pi i}{N/2}mk}}_{\text{odd-indexed part } O_{k}}$$
$$= E_{k} + e^{-\frac{2\pi i}{N}k}O_{k}$$

- DFT of N terms has been split into two DFTs of only $\frac{N}{2}$ terms \Rightarrow Apply algorithm recursively
- Because of periodicity of exponential function, we have:

$$X_{k+\frac{N}{2}} = E_k - e^{\frac{2\pi i}{N}k}O_k$$

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform

3. Transformation of Hit Energies

4. Conclusion

Mean Absolute Cosine Nodes

- On average, most nodes do not carry large coefficients
- "Even-even" nodes dominate, "odd-odd" nodes the smallest

Means of Absolute Values for z - Node 0

Simulate Only Even-Even Nodes

- Only simulate even-even nodes for z ≤ 24 (everything else set to zero)
- Transform simulated nodes back into hit energies
- Create PDFs of shower variables to compare data before FCT with data after FCT (only even-even nodes) and simulated even-even nodes
- Expect simulation to match data with only even-even nodes, and (small) deviations from unaltered dataset
 ⇒ Visible in PDFs

$$E_{\text{total}} = \sum_{\text{hits}} E_{\text{hit}}$$

Centre of Gravity and Mean Shower Radius

$$\operatorname{CoG}_{z} = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot z_{\text{hit}}$$

$$R = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot r_{\text{hit}}$$

Shower Variances (x - and y - axis)

$$\operatorname{Var}(i) = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot (i_{\text{hit}} - \operatorname{CoG}_i)^2 \text{ for } i \in [x, y]$$

Shower Skewnesses (x-and y-axis)

$$\text{Skew}(i) = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - \text{CoG}_i}{\sigma_i}\right)^3 \text{ for } i \in [x, y] \text{ and } \sigma_i = \sqrt{\text{Var}(i)}$$

Shower Skewness Distributions (60 GeV) Shower Skewness Distributions (60 GeV)

Shower Kurtoses (x - and y - axis)

$$\operatorname{Kurt}(i) = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - \operatorname{CoG}_i}{\sigma_i}\right)^4 \text{ for } i \in [x, y] \text{ and } \sigma_i = \sqrt{\operatorname{Var}(i)}$$

1. Introduction

- 2. Theoretical Background
 - Discrete Cosine Transform
 - Fast Cosine Transform
- 3. Transformation of Hit Energies

4. Conclusion

Summary

Simulation of Cosine Nodes with KDEs:

- Reduced number of input values by only simulating even-even nodes for $0 \leq z \leq 24$
- Down to $\frac{16 \times 16 \times 25}{31 \times 31 \times 38} \approx 17.5 \%$ of original number of input values
- KDEs more "stable" because PDFs of even-even coefficients do not peak around zero

Distributions of Kinematic Variables:

- Kinematic variables in good agreement, but not perfect
- Biggest problems with skewnesses in x- and y-direction (simulated showers "too symmetric")

Future Steps

- Fix shower variances and in particular shower skewnesses
- So far tried to:
 - 1. include odd nodes into simulation again to make shower more asymmetric
 - 2. use fudge factors for hit radii
- Adding odd nodes back into simulation especially difficult
 ⇒ Needle in the hay stack
- Help Zobi with his distance-based algorithm and compare results to those of FCT
- \bullet Eventually extend investigation to whole pion shower dataset (so far only 60 GeV for FCT)
- Long-term goals: timing, extra-/interpolation on hit level, EM showers, ...

Thanks for your attention!

Hadronic Showers

- Hadronic showers are very chaotic
- Energy resolution is limited in hadronic showers
 - \Rightarrow Limited by strongly varying electromagnetic fraction
- Study of single showers helps to understand behaviour of hadronic showers in highly granular calorimeters
- Can also develop fast simulation by studying single showers

Fast Simulations for Calorimetry?

- CPU consumption of MC simulations increases with occupancy/granularity
- \bullet Up to 90 % of calculation time is needed for the calorimeter (i.e. in ATLAS)
- Saving of computational resources will become necessary sooner or later
 - \Rightarrow Data-driven fast simulation possible for highly granular calorimeters?

Kernel Density Estimators

- Want to find PDF of dataset $x_1, x_2, ..., x_n$
- Define Kernel Density Estimator (KDE) with bandwidth h as:

$$f(t) = \frac{1}{nh} \sum_{j=1}^{n} k\left(\frac{t-x_j}{h}\right)$$

with

$$k(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2\right)$$

• PDF = sum of all (Gaussian) kernels

• Choice of bandwidth determines smoothness of PDF

Kernel Density Estimators

• Generalise to d dimensions:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{H}|^{-1/2} K\left(\mathbf{H}^{-1/2}(\mathbf{x} - \mathbf{x}_i)\right)$$

- $\Rightarrow \mathbf{x}: d\text{-dimensional data vector} \\ \Rightarrow \mathbf{H}: d \times d \text{ bandwidth matrix}$
- In Python, H = h²C where C is the covariance matrix of the dataset
- Have to choose *h* carefully for fast simulation

Bandwidth Optimisation

- Find optimal bandwidth in range of values
- Quantify differences between data and simulation PDFs with Kolmogorow-Smirnow test for various pion energies

 \Rightarrow Bandwidths below 0.01 MIP yield best results

André Wilhahn, Zobeyer Ghafoor, Stan Lai

Fast Calorimeter Simulation

Multidimensional Discrete Cosine Transform

- In d dimensions, we now have d arrays of lengths $N_1, N_2, ..., N_d$
- Multidimensional DCT is just product of individual 1D-DCTs, e.g. for three dimensions:

$$X_{k_1,k_2,k_3} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} x_{n_1,n_2,n_3} \times \cos\left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2}\right) k_1\right] \cos\left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2}\right) k_2\right] \cos\left[\frac{\pi}{N_3} \left(n_3 + \frac{1}{2}\right) k_3\right]$$

• Inverse of multidimensional DCT (with $\epsilon_i = \frac{1}{2}$ if $k_i = 0$ and else $\epsilon_i = 1$):

$$x_{n_1,n_2,n_3} = \frac{8}{N_1 N_2 N_3} \epsilon_1 \epsilon_2 \epsilon_3 \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} \sum_{k_3=0}^{N_3-1} X_{k_1,k_2,k_3} \times \cos\left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2}\right) k_1\right] \cos\left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2}\right) k_2\right] \cos\left[\frac{\pi}{N_3} \left(n_3 + \frac{1}{2}\right) k_3\right]$$

André Wilhahn, Zobeyer Ghafoor, Stan Lai

Kinematic Shower Variables

Shower Moments

Fraction-22 and Central Fraction

Shower Variance and Skewness (z-axis)

Shower Kurtosis (z-axis)

