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Introduction

Motivation

Want to develop data-based fast simulation algorithm for hadron showers

Decreased computation time as well as storage requirements

Possible to simulate as accurately as full simulation (or even better)?

Fast simulation based on pion shower test beam dataset from June 2018
= “Confined” to test beam conditions

Combine with full simulation for more general test beam conditions
o Different approaches:

1. Fast simulation with discrete cosine transform by myself
2. Distance-based sorting algorithm by Zobeyer Ghafoor (next talk)
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Introduction

Longitudinal Simulation with Kernel Density Estimators

o Used Kernel Density Estimators for

1. on hit level (also done by Zobi)
2. timing 0.02
3. under different incident angles

4. different particles (briefly touched
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Introduction

Compressing Test Beam Data?

@ So far: longitudinal simulation with
Kernel Density Estimators

o AHCAL has 24 x 24 x 38 = 21 888
readout channels

o If describing positions relative to centre
of gravity and shower start, then
technically 47 x 47 x 38 = 83942
channels in analysis
= Too much for KDEs

e Goal thus: reduce (“compress”)
number of values to more manageable
size for hit-wise simulation

[diW] ABi3u3 UH
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Introduction

Centre-of-Gravity Cuts

e Centre of gravity on average close to detector center

@ Only consider events with CoG within 8 x 8 block around detector center
= Reduces input values to 31 x 31 x 38 = 36 518 (still too much for KDEs)

Tile Number (y-direction)

CoG in 1] - Plane

000
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Discrete Cosine Transform

e Consider 1D-array of N real numbers: {xg, x1, ..., Tn_1}

e Discrete Cosine Transform (DCT) will transform these N real numbers into another
set of N real numbers: {Xy, Xi, ..., Xny_1}, where

N-1 - 1
X = n — - |k
k nz:;)x COS[N(R+2> ]

e DCT has exact inverse defined as

2 (1 = ™ 1
Ty = N §X0+ ;Xkcos [N <n+§> k;]
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Theoretical Bac

Discrete Cosine Transformation

Split three-dimensional hit
distributions into single cosine waves
= In principle real Fourier transform

Transformed values quantify how
strongly specific cosine nodes are
represented in original PDF
AHCAL has three dimensions

= Use three-dimensional DCT

If blue curve was hit distribution,

expect cosine nodes to fall off towards
edge of layer

Fast Calorimeter Simulation

Discrete Cosine Transform

Cosine Nodes in Density Profile
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Two-Dimensional Discrete Cosine Transform

01234 6
o From left to right: lowest to highest 0 l I I I I I III
-nod
° ;rcr)lrz t(j)p to bottom: lowest to 1 -'ﬂH
highest y-node 2 -tﬂﬁ
e Superpositions of x- and y-nodes 3 =IEH

e High (white) and low (black) intensities _EHH
o Expect combinations with ==
. f—
odd-numbered nodes to vanish 5 —;ﬁﬁ
= Correspond to energy increases at 6 _EEEE
edges of active layers —
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Complexity of Discrete Cosine Transform

o One-dimensional DCT requires O(n?) operations: n outputs, each of which requires a
sum over n terms

e Becomes even worse for AHCAL test beam data in three dimensions
= Runtime ~ O(n®)

e Fast Fourier Transform (FFT) comes into play which has runtime of O(nlogn)
= Technically Fast Cosine Transform (FCT), but mathematics between FFT and
FCT are equivalent
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Fast Cosine Transform

Theoretical Background

Radix-2 Decimation-in-time FFT (Cooley-Tukey Algorithm)

N-1

2 .
o DFT defined as: Xy = > xne” T with k=0,1,..,N —1
n=0
e Split sum into two sums running over even/odd indices, respectively:
N -1
_2mi mk 27rzk 271'2
Xk = Z Tome N2 +e N Tom+1€ N
m=0 m=0 P

NV
even-indexed part Ey, odd-indexed part O

=FE, + 6_%1601C

e DFT of N terms has been split into two DFTs of only terms

= Apply algorithm recursively
@ Because of periodicity of exponential function, we have:

271'1

Xk_l_N—Ek—eN Ok
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Transformation of Hit Energies

Mean Absolute Cosine Nodes

e On average, most nodes do not carry large coefficients
e “Even-even” nodes dominate, “odd-odd” nodes the smallest

Means of Absolute Values for z — Node 0
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sformation of Hit Ener

Simulate Only Even-Even Nodes

Etotal = Z Ehit
hits
Total Energy Distributions (60 GeV)

0.0016 7 [ Before DCT (Data)
After DCT (Data)
[ After DCT (Simulation)

e Only simulate even-even nodes for
z < 24 (everything else set to zero)

o Transform simulated nodes back into
hit energies

@ Create PDFs of shower variables to o001

compare data before FCT with data
after FCT (only even-even nodes) and

0.0012 A
0.0010 A

simulated even-even nodes 000081

e Expect simulation to match data with
only even-even nodes; and (small)
deviations from unaltered dataset

= Visible in PDF's 000003 1000 2000 3000 4000 5000
Total Energy [MIP]

Number of Events (normalised)
o o o
o o o
o o o
S ® 8
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Transformation of Hit Energies

Centre of Gravity and Mean Shower Radius

E E hit * Zhit

Centre of Gravity Distributions (60 GeV) Mean Shower Radius Distributions (60 GeV)
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sformation of Hit Ener

Shower Variances (z- and y-axis)

1
Var(i) = Z Bt - (inig — CoGi)2 for i € [z, y]
Etotal hits
Shower Variance Distributions (60 GeV) Shower Variance Distributions (60 GeV)
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= Showers are a bit too narrow
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sformation of Hit Ener

Shower Skewnesses (z- and y-axis)

Skew (i) = El ZEhit . <M> for i € [x,y] and o; = \/Var(i)

g;

Shower Skewness Distributions (60 GeV) Shower Skewness Distributions (60 GeV)
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= Showers are “too symmetric”
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Transformation of Hit Energies

Shower Kurtoses (z- and y-axis)

1 init — CoGy;

4
Kurt(z) = — g Ehit - <?> for i € [x,y] and o; = \/ Var(7)
Ot hit ‘
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Conclusion

Summary

Simulation of Cosine Nodes with KDEs:

@ Reduced number of input values by only simulating even-even nodes for 0 < z < 24

16x16x25
31x31x38

o KDEs more “stable” because PDFs of even-even coefficients do not peak around zero

@ Down to ~ 17.5% of original number of input values

Distributions of Kinematic Variables:

o Kinematic variables in good agreement, but not perfect

e Biggest problems with skewnesses in z- and y-direction (simulated showers “too
symmetric”)
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Conclusion

Future Steps

Fix shower variances and in particular shower skewnesses
So far tried to:

1. include odd nodes into simulation again to make shower more asymmetric
2. use fudge factors for hit radii

Adding odd nodes back into simulation especially difficult
= Needle in the hay stack

Help Zobi with his distance-based algorithm and compare results to those of FCT

Eventually extend investigation to whole pion shower dataset (so far only 60 GeV for
FCT)

Long-term goals: timing, extra-/interpolation on hit level, EM showers, ...
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Hadronic Showers
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Fast Calorimeter Simulation

Hadronic showers are very chaotic

Energy resolution is limited in hadronic

showers

= Limited by strongly varying
electromagnetic fraction

Study of single showers helps to

understand behaviour of hadronic

showers in highly granular calorimeters

Can also develop fast simulation by
studying single showers
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Fast Simulations for Calorimetry?

e CPU consumption of MC simulations increases with occupancy/granularity
e Up to 90 % of calculation time is needed for the calorimeter (i.e. in ATLAS)
e Saving of computational resources will become necessary sooner or later

= Data-driven fast simulation possible for highly granular calorimeters?
SO ATLASPrdimily
[ 2022 Computing Model - CPU

Run 5 (1=165-200)

1]

MC Simulation

T

40 Other

* Conservative R&D
v Aggressive R&D
— Sustained budget model g

[T

Annual CPU Consumption [MHSO068years]

30 :— (+10% +20% capacitylyear) 1 User Analysis
: ,'"" 5 ]
20 F: 5
C ] MC Event Generation
10F d
E E MC Reconstruction
0320 3022 2024 2026 2028 2030 2032 2034 2036 Group Production

Year
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Kernel Density Estimators

e Want to find PDF of dataset =1, s, ..., Tn,
@ Define Kernel Density Estimator (KDE) with bandwidth h as:

with

e PDF = sum of all (Gaussian) kernels

@ Choice of bandwidth determines smoothness of PDF
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Kernel Density Estimators

Kernel Denstty Estimate 2s Weighted Sum of Component Densit o Generalise to d dimensions:
1 n
Fe0 = = 3 HIK (B2 (- x))
i=1

= x: d-dimensional data vector
= H: d x d bandwidth matrix

o In Python, H = h2C where C is the
covariance matrix of the dataset

Density

= @ Have to choose h carefully for fast

. simulation

Components
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Bandwidth Optimisation

e Find optimal bandwidth in range of values
e Quantify differences between data and simulation PDFs with Kolmogorow-Smirnow
test for various pion energies

1.0
. . + E,=20GeV
. A BT + En=40GeV
1 ¢ 0 . . + E,=80GeV
08y ¢ . 0 En=120GeV

»  En=200GeV

N o
kS o
.

Mean of KS probabilities for each bandwidth h
o
o

°
o
.
.
.
.
.
.
.
.
.

Bandwidth h

= Bandwidths below 0.01 MIP yield best results
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Multidimensional Discrete Cosine Transform

e In d dimensions, we now have d arrays of lengths N1, No, ..., Ny
e Multidimensional DCT is just product of individual 1D-DCTs, e.g. for three
dimensions:

Ni—1No—1N3—1

Xy ko ks = Z Z Z Zny,ng,nz X

n1=0 ny=0 n3=0

cosTrn—i-lkcosTrn—i-lkcoswn—i-lk
MUTT )M N 2T Ny U2

e Inverse of multidimensional DCT (with ¢; = % if k; =0 and else ¢; = 1):

N1—1Na—1N3—1

8
S LI DD DD DI S
ni,n2,m3 N1N2N3 — — — 1,R2,R3
k1=0 k2=0 k3=0

cosln—i-lkcosln—i-lkcosln—i-lk
MUTT )M N, P T2 T Ny U2
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Kinematic Shower Variables

o Total Energy: Eiotal = Y Enit
hits

Centre of Gravity: CoG; = m Z Ehit - int for @ € [z,y, 2]

Shower Radius: R =

> Enit - Thit With 7hit = /(2nit — CoGz)? + (ynit — CoGy)?

hits
Z Ehlt lf Zhit < 22

Etotal

Fraction-22: foo = Ec —~

Central Fraction: fcentral = Et — Z FEpi if rpy < 30mm

@ Detached Fraction: fyetached =

within +17,£1J, and £2K

Ec — Z Bt if hit has at most one neighbouring hit
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Shower Moments

e Shower Variance: Var(i) = Etlt 1 3> Bt - (inie — CoGy)? for i € [z, y, 2]
' hits

Etotal

. 3
o Shower Skewness: Skew(i) = = > B - (Z‘“t;&) with o; = y/Var(i) and
hits ‘

i € [z,y,2]

: 4
e Shower Kurtosis: Kurt(i) = Etlt - > Bt - (Zh‘t;ﬂ) with o; = y/Var(i) and
" hits !

i € [z,y,2]
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Fraction-22 and Central Fraction

Fraction — 22 Distributions (60 GeV) Central Fraction Distributions (60 GeV)
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Shower Variance and Skewness (z-axis)

Shower Variance Distributions (60 GeV) Shower Skewness Distributions (60 GeV)
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Shower Kurtosis (z-axis)

Shower Kurtosis Distributions (60 GeV)
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