Results of the AHCAL Fast Simulation Algorithm with a Distance Based Sorting for Calorimeter Tiles

Zobeyer Ghafoor

II. Physikalisches Institut, Georg-August-Universität Göttingen

Supervised by Stan Lai

December 11, 2024

Zobeyer Ghafoor, André Wilhahn, Stan Lai

1

Table of Contents

1 Distance Ordering

2 Energy Distribution

3 Kinematic Variables

4 Summary and Outlook

Distance Ordering

- Pion test beam data (2018) with $E_{\pi}=40\,{
 m GeV}$
- 100000 events for data; 10000 events for simulation
- Calculate distance of 24 × 24 to event's centre of gravity (CoG)
- $\operatorname{CoG}_{i} = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot i_{\text{hit}}$ with $i \in [x, y, z]$
- Distance $d = \sqrt{(I - \text{CoGX})^2 + (J - \text{CoGY})^2}$
- Sort the tiles from smallest to largest distance to CoG
- First tile is first energy in PDF

23	19	18	21	24
16	7	6	10	20
11	2	*	4	14
12	3	1	5	15
17	9	8	13	22

Simulation

- $\rightarrow\,$ PDF for given dataset is created based on KDEs
- ightarrow Generate 10000 events from the estimated PDF with h=0.01
- $\rightarrow\,$ Each event: 24 $\times\,$ 24 $\times\,$ 20 simulated energies
- ${\small \textcircled{0}}$ Calculate distance of tiles to the simulated CoGX/CoGY tile
- @ Simulate energies based on the sorted energies \rightarrow sorted simulated energies
- Solution Assign simulated sorted energies to the tiles sorted by distance

Energy Distribution per Tile

Layer 0

Energy per Tile per Layer (Event 6)

• Data:

• Simulation (simulated energies < 0.05 MIP set to 0):

Zobeyer Ghafoor, André Wilhahn, Stan Lai

Kinematic Variables

- Full dataset: 24 \times 24 tiles per layer; 38 layer in total \rightarrow 21888 energies per event
- PDF estimation with KDE cannot consider all energies per event
- $\rightarrow\,$ Reduce total tile number and neglect outer layers:
 - Full dataset: $24 \times 24 \times 38$
 - ${\color{black}@}~16\times16\times38$
 - $\textbf{3}~20\times20\times25$
 - $\textcircled{0}{20}\times 20\times 30$
 - $\mathbf{5}$ 24 imes 24 imes 20
 - Reduced dataset simulated
 - No total agreement expected with full dataset
 - Include Gaussian noise later

Total Energy

- Total Energy: $E_{\text{total}} = \sum_{\text{hits}} E_{\text{hit}}$
- · Simulated energy distribution agrees with reduced data
- More deposited energy in outer layers than outer tiles

Centre-of-Gravity

Centre-of-Gravity:
$$\operatorname{CoG}_i = \frac{1}{E_{\operatorname{total}}} \sum_{\operatorname{hits}} E_{\operatorname{hit}} \cdot i_{\operatorname{hit}}$$
 with $i \in [x, y, z]$

• Good agreement between data and simulation with 24 × 24 tiles in x- and y-direction

• Good agreement between data and simulation with all layers in *z*-direction

Shower Radius

Shower Radius:
$$R = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot r_{\text{hit}}$$
 with
 $r_{\text{hit}} = \sqrt{(i_{\text{hit}} - \text{CoGX}_{\text{hit}})^2 + (j_{\text{hit}} - \text{CoGY}_{\text{hit}})^2}$ and $i_{\text{hit}} \in [x, y, z]$

- Large influence of outer tiles with deposited energy
- Outer layers register lower-energetic hits \rightarrow smaller influence for shower radius

Shower Variance

Shower Variance: Var(i) =
$$\frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot (i_{\text{hit}} - \text{CoG}_{i})^{2}$$
 with $i \in [x, y, z]$

• Large influence of outer tiles with deposited energy

 Outer layers register lower-energetic hits and larger distance to CoGZ → smaller influence on shower variance

Shower Skewness

Shower Skewness: Skew(*i*) = $\frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - \text{CoG}_i}{\sigma_i}\right)^3$ with $\sigma_i = \sqrt{\text{Var}(i)}$ and $i \in [x, y, z]$

• Including less tiles lead to discrepancies for skewness in *x*- and *y*-direction

• No significant influence of outer layers on skewness in *z*-direction

Shower Skewness (x-direction)

Shower Skewness (x-direction)

Summary and Outlook

- Distance based sorting and simulation of deposited energies for fast simulation
- Exclude outer tiles and layers to see behaviour of energy distributions
- Initial results promising; however, not fully optimal
- Include Gaussian noise
- Investigate behaviour of energy and kinematic variables with tile groups (16 × 16) and all 38 layers
- Expand to larger energies

23	19	18	21	24
16	7	6	10	20
11	2	*	4	14
12	3	1	5	15
17	9	8	13	22

Distance Ordering Energy Distribution Kinematic Variables Summary and Outlook

Thank You For Your Attention!

BACKUP

Centre-of-Gravity

• Simulation of CoGs in all three directions with KDE

Kinematic Variables

• Centre-of-Gravity:
$$\operatorname{CoG}_i = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot i_{\text{hit}}$$
 with $i \in [x, y, z]$

• Total Energy:
$$E_{\text{total}} = \sum_{\text{hits}} E_{\text{hit}}$$

• Shower Radius:
$$R = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot r_{\text{hit}}$$
 with
 $r_{\text{hit}} = \sqrt{(i_{\text{hit}} - \text{CoGX}_{\text{hit}})^2 + (j_{\text{hit}} - \text{CoGY}_{\text{hit}})^2}$ and $i_{\text{hit}} \in [x, y, z]$

• Central Fraction:
$$F_{\text{central}} = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}}$$
 if $r_{\text{hit}} < 30 \, \text{mm}$

• Shower Variance:
$$Var(i) = \frac{1}{E_{total}} \sum_{hits} E_{hit} \cdot (i_{hit} - CoG_i)^2$$
 with $i \in [x, y, z]$

• Shower Skewness: Skew
$$(i) = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - \text{CoG}_{\text{i}}}{\sigma_i}\right)^3$$
 with $\sigma_i = \sqrt{\text{Var}(i)}$ and $i \in [x, y, z]$

• Shower Kurtosis: Kurt(i) =
$$\frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - \text{CoG}_i}{\sigma_i}\right)^4$$
 with $\sigma_i = \sqrt{\text{Var}(i)}$ and $i \in [x, y, z]$

CoGY

Shower Variance

Shower Skewness

Central Fraction

Central Fraction: $F_{\text{central}} = \frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}}$ if $r_{\text{hit}} < 30$ (60) mm

 $\bullet\,$ Simulation of energy fraction in a radius of $30\,\mathrm{mm}$ and $60\,\mathrm{mm}$ agrees with data

Shower Kurtosis

- Shower Kurtosis: Kurt(*i*) = $\frac{1}{E_{\text{total}}} \sum_{\text{hits}} E_{\text{hit}} \cdot \left(\frac{i_{\text{hit}} - CoG_i}{\sigma_i}\right)^4$ with $\sigma_i = \sqrt{\text{Var}(i)}$ and $i \in [x, y, z]$
- Including less tiles lead to discrepancies for kurtosis in xand y-direction

