# Status report of the activity with different scintillation materials

Valerii Dormenev

2<sup>nd</sup> Physics Institute Justus Liebig University Giessen



## **List of tested Scintillators**

| Property                                      | YAG:Ce | YAG: C                | YAG:<br>C, Ce        | GAGG:<br>Ce, Mg                  | LuAG:<br>Ce | LuAG:Pr | YSO:Ce | LYSO:Ce | LYSO:<br>Ce, Ca | LYSO:<br>Ce, Mg | LSO:Ce   | YAP:Ce | LuAP:Ce |
|-----------------------------------------------|--------|-----------------------|----------------------|----------------------------------|-------------|---------|--------|---------|-----------------|-----------------|----------|--------|---------|
| Density,<br>g/cm <sup>3</sup>                 | 4.57   | 4.57                  | 4.57                 | 6.67                             | 6.73        | 6.73    | 4.5    | 7.1     | 7.1             | 7.1             | 7.4      | 5.37   | 8.34    |
| Zeff                                          | 35     | 35                    | 35                   | 54.4                             | 62.9        | 62.9    | 39     | 65      | 65              | 65              | 75       | 36     | 64.9    |
| Hardness by<br>Mohs                           | 8.5    | 8.5                   | 8.5                  | 8                                | 8.5         | 8.5     | 5.8    | 5.8     | 5.8             | 5.8             | 5.8      | 8.6    | 8.5     |
| Index of<br>refraction at<br>max.<br>emission | 1.82   | 1.82                  | 1.82                 | 1.9                              | 1.84        | 1.84    | 1.79   | 1.81    | 1.81            | 1.81            | 1.82     | 1.95   |         |
| Melting<br>point, °C                          | 1970   | 1970                  | 1970                 | 1850                             | 2020        | 2043    | 2273   | 2100    | 2100            | 2100            | 2050     | 1875   | 1960    |
| Wavelength<br>of max.<br>emission,<br>nm      | 550    | UV(?),<br>550         | 550                  | 530                              | 535         | 310     | 425    | 420     | 420             | 420             | 420      | 370    | 365     |
| Decay time,<br>ns                             | 70     | 75(10 %)/<br>375(90%) | 62(71%)/<br>160(29%) | 30(25%)/<br>80(60%)/<br>200(15%) | 70          | 20      | 50-70  | 41      | 39              | 40(?)           | 40       | 25     | 18      |
| Radiation<br>length , cm                      | 3.5    | 3.5                   | 3.5                  | 1.61                             | 1.41        | 1.41    |        | 1.35    | 1.35            | 1.35            | 1.14     | 2.2    | -       |
| Photon<br>yield, 10 <sup>3</sup><br>ph/MeV    | 30     |                       | 30                   | 30/upto<br>46 x                  | 15-25       | 15-22   | 10-30  | 24      | 24/43.5         | 25              | 30       | 25     | 11      |
| Producer                                      | CRYTUR | ISMA                  | ISMA                 | FOMOS                            | CRYTUR      | CRYTUR  | OST    | OST     | ТАС             | ТАС             | ADVATECH | CRYTUR | OST     |

## Outline

- Ceramics scintillation material (Gd<sub>2</sub>Y<sub>0.5</sub>Lu<sub>0.5</sub>)Al<sub>2</sub>Ga<sub>3</sub>O<sub>12</sub>: Ce, Mg
- **BaO\*2SiO<sub>2</sub>: Ce (DSB) glass scintillation material**
- Conclusion

## **Properties of heavy and bright scintillators in comparison to members of the GAGG family**

| Material                                                                                          | Density, g/cm <sup>3</sup> | Light Yield, ph/MeV | $	au_{sc}$ , ns | $\lambda_{max}$ , nm |
|---------------------------------------------------------------------------------------------------|----------------------------|---------------------|-----------------|----------------------|
| $Bi_3Ge_4O_{12}$ (BGO)                                                                            | 7.1                        | 9 000               | 300             | 505                  |
| Lu <sub>2</sub> SiO <sub>5</sub> :Ce (LSO)                                                        | 7.4                        | 26 000              | 40              | 420                  |
| (Lu <sub>0.8</sub> -Y <sub>0.2</sub> ) <sub>2</sub> SiO <sub>5</sub> :Ce (LYSO)                   | 7.0                        | 30 000              | 36              | 420                  |
| Gd <sub>3</sub> Al <sub>2</sub> Ga <sub>3</sub> O <sub>12</sub> :Ce , Mg (GAGG)                   | 6.6                        | 46 000              | 80              | 530                  |
| (Gd,Y) <sub>3</sub> Al <sub>2</sub> Ga <sub>3</sub> O <sub>12</sub> :Ce , Mg (GYAGG) <sup>1</sup> | 5.8                        | 52 000              | 50              | 520                  |
| (Gd,Lu) <sub>3</sub> Al <sub>2</sub> Ga <sub>3</sub> O <sub>12</sub> :Ce (GLAGG) <sup>2</sup>     | 6.8                        | 50 000              | 75, 190, 1300   | 545                  |

<sup>1</sup> M. Korzhik *et al.*, "Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3O12:Ce,Mg." *CrystEngComm*, 2020, V. 22, pp. 2502–2506, https://doi.org/10.1039/D0CE00105H. <sup>2</sup> https://www.rmdinc.com/product-category/glugag-gamma-neutron-ceramic-scintillation-detector/

**GYAGG** is too light **GLAGG** has an additional very slow component that can be critical for CTR

## (Gd<sub>2</sub>Y<sub>0.5</sub>Lu<sub>0.5</sub>)Al<sub>2</sub>Ga<sub>3</sub>O<sub>12</sub>:Ce, Mg as scintillation ceramics

#### **Goals:**

Increase of density Best combination of cations to optimize  $Z_{eff}$ , LY, CTR Reduction of slow component based on implementation of Lu in the matrix

#### **Dimensions:**

1 sampleØ14×1 mm²3 samples2×2×1 mm³



| Property                   | (Gd <sub>2</sub> Y <sub>0.5</sub> Lu <sub>0.5</sub> )Al <sub>2</sub> Ga <sub>3</sub> O <sub>12</sub> :Ce (2000 ppm), Mg (50ppm) |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Density, g/cm <sup>3</sup> | 6.45                                                                                                                            |
| $\lambda_{max}$ , nm       | 520                                                                                                                             |
| Primary decay time, ns     | 30                                                                                                                              |
| LY, 10 <sup>3</sup> ph/MeV | 32000                                                                                                                           |

#### **Transmittance spectra**

Sample: Ø14×1 mm<sup>2</sup>



#### **Luminescence spectrum**

**Excitation with laser diode**  $\lambda_{max} = 325$  nm, power = 25 mW

Sample size: Ø14×1 mm<sup>2</sup>



#### **Light Yield**

Absolute and relative light yield as a function of integration gate measured at different



## **Kinetics of scintillation (1)**

#### **Experimental technique:** Start-Stop method

Coincidence between 2 annihilation γ-quanta of a <sup>22</sup>Na-source. Start detector: BaF2 + UV filter attached to PMT. Stop channel: sample placed on the distance from second PMT. DAQ: CAEN V1730 S digitizer



#### **Kinetics of scintillation (2)**

#### **Experimental technique:** pulse-shape

Fitting of averaged pulse-shape using Tektronix MSO66B40



#### **Coincidence Time Resolution (CTR)**





#### **Experimental set-up:**

Two similar crystals attached to SiPMs (Broadcom AFBR-S4N44C013) Readout via Broadcom evaluation board (AFBR-S4E00) DAQ: Tektronix MSO66B oscilloscope

All measurements were performed in a climate chamber WEISS Technik WK3-340/40 for temperature stabilization

#### **Coincidence Time Resolution (CTR)**

#### **2-dimensional energy and time correlations**



## **CTR results**

Obtained at different temperatures





## Conclusion

- The new samples show a relatively high light yield without significant contribution of slow decay components.
- For the first time, CTR (FWHM) values below 100 ps have been achieved for samples of the GAGG family.
- The CTR values based on SiPM-readout improve even further for lower operating temperatures.
- The tested technology allows to produce transparent and 3-4mm wide ceramic plates, allowing to produce cheaper detector components if aiming tracking detector or thermal neutron detector

## **Physical properties of different heavy silica glasses**

| Material                                                | ρ<br>g/cm3        | $\mathbf{Z}_{\mathrm{eff}}$ | X <sub>0</sub><br>cm | λ <sub>max</sub><br>nm |
|---------------------------------------------------------|-------------------|-----------------------------|----------------------|------------------------|
| BaO*2SiO <sub>2</sub>                                   | 3.7               | 51                          | 3.6                  | -                      |
| DSB: Ce                                                 | 3.8               | 51                          | 3.5                  | 440-460                |
| BaO*2SiO <sub>2</sub> :Ce<br>glass heavy loaded with Gd | 4.3- <b>5(</b> ?) | 56.9                        | 2.6                  | 440-460                |

**Technology:** Typical glass production technology combined with successive thermal annealing  $(800 - 900^{\circ}C)$ . Technological process is manageable at any glass production facility worldwide.

#### **Glass samples produced by Schott Company in 2021**

Two types of the glass materials have been delivered by Schott Company:

5 samples with 20x20x5 mm<sup>3</sup> dimensions;

5 samples with 20x20x50 mm<sup>3</sup> dimensions;





## **DSB glass samples: Light Yield**



 $LY(phe/MeV) = (PP-ped)/(SE_Peak-ped)/E_y$ 

where *PP* - photopeak position of obtained spectrum, *ped* - pedestal peak positon (nonzero shift of channels due to electronics noise), *SE\_peak* – a single electron peak position of the PMT,  $E_{\gamma}$  - energy of g-quanta. For temperature stabilization, the whole set-up is located vertically in a climate chamber (Weiss Technik WK3-340/40).

#### Measurements were done with <sup>241</sup>Am γ-source (Eγ = 60 keV), PMT Hamamatsu R2059







#### **Transmittance vs sample thickness**



#### Light yield vs sample thickness



Beam test results with marked high-energy photons @ MAMI June 2023

Sample was wrapped in 8 layers of teflon film Attached to Hamamatsu R2059 PMT Optical grease: Basylon 300.000 Measurements were done for three High Voltages of PMT: 1500, 1550, 1700 V Photon (Tagger) energies: 19.4 28.3 39.8 58.1 69.2 100.6 MeV 16 channel digitizer CAEN 1730 V was used for data acquisition

For every channel information of time marker and trace with 1 microsecond length was recorded if amplitude was above threshold.

Energy was defined as a sum pulse of the trace.

Coincidence scheme was realized as logic AND of time markers between DSB channel and logic OR of six Tagger channel.



Photon (Tagger) energies: 19.4 28.3 39.8 58.1 69.2 100.6 MeV

Energy distributions of six tagger energies Fits with Novosibirsk fitting function



#### **Energy resolution**



#### **Properties evolution**









#### **Properties evolution**









## Lithium glass scintillator Li<sub>2</sub>O-2SiO<sub>2</sub> (DSL) doped by Ce or Tb

#### **Kinetics spectra of DSL:Ce**



#### Luminescence spectra





## **DSL: Ce** sample provided to Giessen for tests diameter 34 mm, height 16mm



## Conclusion

- The DSB glass is a low-cost material and even at the present stage shows already attractive properties, which further can be customized to specific applications. The present density is significantly higher in comparison to plastic scintillators and allows as well variable shapes due to casting.
- DSB being loaded with Gd has been a first attempt to increase the density, which leads automatically to a larger light yield. Even if there is presently no possibility to reduce the absorption length, the detection of high energetic showers due to photons or hadrons can be considered by significantly enlarging the length of the glass rods on the level of 30-50cm.
- However, macro-defects are still the limiting factor. According to the experience of the manufacturer, the well-known and already developed technology for the mass production of large glass volumes, should overcome the present problems with lab-size prototypes. Further technology optimization should be targeted to improve timing characteristics of the material and the radiation hardness