Investigation of afterpulse in irradiated SiPMs

DRD6 AHCAL "Marzipan" Meeting

Elena Popova, Erika Garutti, Jörn Schwandt, Pavel Parygin

Outline

- Objectives
- Reminder on afterpulsing effect
- Experimental setup, SiPMs and data
- Methods of analysis
- Results
- Conclusions and next steps

Objectives

- Quantitative and qualitative characterization of afterpulsing
- **Develop methods** to accurately isolate and measure afterpulsing
- Characterize afterpulsing behavior under different conditions
 - Such as overvoltage and irradiation
- Define the origin of the afterpulses
 - To fight it back in the future
- All this would allow us to properly account for the afterpulsing effect in SiPM operations, improving performance in applications such as high-energy physics experiments and medical imaging.

What's the afterpulsing (AP)?

- During the primary Geiger discharge, charge carries might be trapped in defect states within the silicon lattice
- The trapped charge carries can be released after a delay
 - Triggering additional Geiger discharge of the SiPM cell
- Factors influencing AP
 - Defects density
 - Original Defects (manufacturing process)
 - Radiation-induced defects
 - Operation conditions
 - E.g. temperature and (over)voltage

 $E_{i} \xrightarrow{0.044 \text{ eV}} B \xrightarrow{0.044 \text{ eV}} B$

Schematic representation trapping levels responsible for AP

Conduction ban

Experimental setup, SiPMs and data

• SiPMs:

- HPK S14160 test structures
- 11x11 cells, 15 µm pitch
- Irradiated to Φ =2e12, 1e13, 5e13 cm⁻²
 - Only Φ =0e00 and Φ =2e12 cm⁻² are covered today
- Only 1 cell is read out! (marked as ☆ on the pic)
 - Other 120 cells are biased below $\rm U_{bd}$

• Configuration:

- Climate chamber set to -30°C
- Dual-Channel Bias and Readout Board
 - Each channel for either 1 or 120 cells
- DAQ: amplifier and oscilloscope at 10 GS/s
- Laser: 451 nm, 50 ps pulse length
- Bias voltages: ≈1..5 V above breakdown
 - With step of 0.25 V

- Data:
 - Raw waveform
 - 1000 ns long
 - Laser fires at ≈313 ns
 - 30k w/f's for each BV point

Methods of analysis

Two independent methods developed in parallel:

Pulse finding/counting

- Based on multiple linear regression
 <u>signal processing</u>
 - SiPM Signal Processing via Multiple Linear Regression, 2023, W. Schmailzl et al
- Select laser events as primary ones
 - With no pre-history
 - And of full amplitude
- Count secondary pulses
- Subtract dark counts
- Calculate AP probability

Charge integration

- 3 different windows for:
 - DCR estimation
 - Laser signal charge integration
 - Pre-selection of laser events
- Count laser events with excess charge
- Subtract dark counts
- Calculate AP probability

Pulse template

Pulse finding algorithm

- Detecting potential peaks with "dummy" template
 - Gauss+exponential function
- Update template with detected pulses shapes
- Iterative pulse position optimization:
 - Residual between the data and the model
 - Repeate to minizime residual
- Derived variables for detected pulses (
):
 - Timestamp

• Pulse pedestal

• Amplitude

Waveform number

Afterpulsing probability calculation

- Estimate DCR from region before "laser" fires [1]
 - Recalculate to the number of DC events (N_{DC}) in signal region

 $\mu_{DCR} = \frac{\int_{10}^{190} pulses(t)dt}{N_{waveforms} * 190} * 90 \qquad P(N_{DC} = 1) = -\mu_{DCR} * e^{-\mu_{DCR}} N_{DC} = P(N_{DC} = 1) * N_{Primary}$

- Pre-select "clean" transients with "laser" response [2]
 - No pulses before the signal
 - Primary discharge is \approx full amplitude
- Count only one secondary pulse in Δt=90ns* [3]
 - For each transient, starting from selected primary pulse
 - Subtract DC counts from step [2]
 - to get AP count and probability:

$$N_{AP} = N_{Secondary} - N_{DC} \qquad P_{AP} = \frac{N_{Secondary} - N_{DC}}{N_{Primary}}$$

*90ns window is chosen because of laser reflections spaced at 95-100ns after the main pulse

Number of detected pulses versus timestamp for all waveforms (top) and pre-selected waveforms (bottom)

Charge integration approach

- Integrate charge in DCR region
 - For all transients
 - To calculate DCR (see next slides)
- Pre-selecting laser events based on:
 - RMS and maximum amplitude in veto region
 - Low RMS and amplitude means no pulses
 - Amplitude maximum in signal region
 - To make sure there was "laser " discharge
 - Wavelet transformation was employed to improve cutting (see backup)
- Integrate charge in signal region
 - Considering only pre-selected transients
 - Count events with excess charge
 - Subtract DC counts
 - And derive AP counts and probability

DC calculations

- Integrate charge in DCR and signal regions
 - Fit 0 and 1st peak to derive SiPM gain
- Calculate μ_{DCR} using P(N=0):

 $\mu_{DCR(100ns)} = -\ln\left(\frac{N_0}{N_{total}}\right)$

• Then, DC number (N_{DC}) for a given gate is

$$N_{DC} = \mu_{DCR(gate)} * N_{Primary}$$

where
$$\mu_{DCR(gate)} = \frac{\mu_{DCR(100ns)}}{100} * gate$$

AP calculation

- Fit 1st PE peak with Crystall Ball function
 - To catch left tail due to under-shoot events
 - The peak represents "pure" laser response
- Calculating integral under the function

 $N_{PureLaser} = \int_{\mu-5\sigma}^{\mu+5\sigma} FitFunc(x)dx$

• Excess charge occuring due to DC an AP events

 $N_{AP+DC} = N_{total} - N_{PureLaser}$

- Where N_{total} is the histogram entires
 - == number of pre-selected waveforms
 - == primary discharges (N_{Primary})
- Then, AP counts: $N_{AP} = N_{AP+DC} N_{DC}$
- And AP probability: $P_{AP} = \frac{N_{AP}}{N_{Primary}}$

11

Uncertainties

- For both methods the binomial errors model was considered
- The method is described in <a>FERMILAB-TM-2286-CD by Marc Paterno
- Number of primary discharges is the sample size
- "Successful outcomes" is the number of AP+DC events
- Plus, individual error calculation for DC events (Poisson)
- Then, use error propagation to derive uncertainties for AP probability

Comparison of pulse counting and charge integration method

AP, %

- Afterpulse probability P_{AP} increases as a function of overvoltage
- No increase observed for P_{AP} after irradiation to Φ =2e12 cm⁻²
- Both methods show similar trends with voltage
- However, direct pulse counting gives slightly lower P_{AP}

Extraction of de-trapping time

- Calculating AP probability for different gates provides an opportunity to derive the de-trapping time constant
- Considering two effects:

• De-trapping as
$$(1 - \exp\left(-\frac{t - t_{off}}{\tau_{AP}}\right))$$

• Cell recovery as
$$(1 - \exp\left(-\frac{t-t_0}{\tau_{rec}}\right))$$

- t_0, τ_{rec} are taken from dedicated recovery curve fitting
- Extracted value of τ_{AP} offers insights into the de-trapping dynamics
 - Can later be used for the trapping levels characterization

De-trapping time versus overvoltage

- τ_{AP} can only be reliably derived for OV>3.5 V
- De-trapping time appears to be fast in this region
 - With τ_{AP} < 10ns
- Poole-Frenkel effect and/or shallow traps can be among responsibles
 - And this requires more careful checks and studies

Conclusions and next steps

- Two independent methods were developed to measure and characterize afterpulses in a single-cell SiPM
 - These allow us to measure the afterpulsing probability
 - And measure the time constant of a de-trapping time
- Both were successfully applied on non-irradiated and Φ =2e12 cm⁻² samples
 - For those it was found that $\rm P_{AP}$ and $\tau_{\rm AP}$ are not visibly changing at this fluence level
- Next: adopt the method to analyze sample irradiated to 1e13 sample
- Move to 120 cells, where direct 1 to 120 scaling is possible
 - Uniform radiation damage, DCR is proven to be scalabe -- Radiation damage uniformity in a SiPM
- Use all this knowledge to identify the source of the afterpulsing
 - What kind of defects is responsible for it

BACKUP

Charge integration – pre-selection

- One of the complimentary waveform transformation is wavelet denoising
- At extreme levels it removes the electronics noise and somewhat corrupts the signal
- Yet, this allows to detect the presence of the signal in a given gate
- And use it for transients pre-selection

Φ=1e13 cm⁻², ΔV=4 V, T=-30 °C

Laser primary pulse and afterpulses

- Non-irradiated sample
 - Laser discharges and afterpulses are clearly visible when we plot detected pulses as a function of time
 - Cumulative for all transients

Recovery time

Φ=1e13 cm⁻², ΔV=4 V, T=-30 °C

- Example of a recovery time obtained using the amplitudes from the pulse finding algorithm
- t₀ and τ_{rec} are "deadtime" (time, during which bias voltage drops below U_{bd} until it comes back to operational value) and recovery time, respectively
- These are later used in function used to derive $\tau_{\rm AP}$

Fit function for $\tau_{\rm AP}$ calculation

- Fit function for $\tau_{\rm AP}$ calculation
- But with two components also plotted separately

Afterpulsing comparison

- Additionally, the charge integration method was included
- The same procedure as with the data
 - Histogram -> Fit -> Count
 - NB: no DCR in simulations!
- Couple of improvements:
 - Fit is now done in range based on gain
 - No baseline subtracted
 - The resolution of the afterpulse tail is better
- 90ns gate worked quite well
 - Falls closely to true AP

