

VniverSitat ĐỹValència

INSTITUT DE FÍSICA C o r p u s c u l a r

This research is supported by:

GOBIERNO **DE ESPAÑA**

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Plan de Recuperación, Transformación Resiliencia

ECAL-NPOD Vertex reconstruction

Melissa AS, Shan H, Adrián IQ, Jesús MH shan.huang@ific.uv.es

LUXE NPOD, 27 November 2024

Financiado por la Unión Europea **NextGenerationEU**

Assuming no background

- Separation power:
 - If the (two signal) showers overlap, until how close are they can we separate them? Quantified by <u>clustering efficiency</u>
 - What if there are background showers?
 - ... the photons have different energies?
- Reclustering
- Reconstruction
 - Quality quantified by the residues of
 - vertex position
 - <u>p</u>⊤
 - cos(Δphi)

Targets

Particle identification

• Given a shower created by one particle, how good can we determine which kind of particle generate this shower? Quantified by <u>likelihood</u> (see MAS)

Workflow

- Clustering (more than two clusters?)
- PID (two photons?)
- Reclustering (possible vertex?)
- Reconstruction

Codes at this GitHub repository

Reminder: Reconstruction targets

- Reminder: dd4hep/Marlin
 - Optimization
- Results
 - Power of separation
 - Reconstruction

Simulation

- Geometry description of ECAL-E in dd4hep
- Standalone ECAL-E simulated by ddsim
 - Vacuum outside
- Facile digitization:
 - Hit deposit smearing 10%
 - Hit deposit cut at 1/2 MIP
- Gun relocated to avoid stave gaps
- Gun position smearing removed

Simulations for analysis:

- Mono-energetic particle sims
 - 0.5, 1.5, 3.5 GeV
- Two-particle sims for clustering
 - Parallel with various distances in between
 - z = -1.0 m; scanning Δx
 - From a fixed vertex with various angles
 - z = -2.5 m; scanning angles
- Flat-spectrum sims for PID (by MAS)
 - 0.5-3.0 GeV

dd4hep scripts at this GitHub path

Reconstruction

- Separation power (parallel sim.)
 - Nearest-neighbour clustering
 - Optimised for different energies
 - The deposits of the two clusters should be close enough (0.5 < ratio < 2.0)
 - How close the neighbours are?
 - dCut: $\sqrt{[15^2+(5.5^*d)^2]}$ mm; d = 1,2,3
 - eCut: 1,2,...,10 MIPs

- Use the optimised parameters to continue with vertex simulations
 - Reclustering
 - Along parallel cylinders
 - Reconstruction
 - vx_{{x, y, z}} vertex position residues
 - p_T transverse momentum
 - mass = $\sqrt{(E^2 p_z^2 p_T^2)}$
 - cos(∆phi)

- Reminder: Reconstruction targets
- Reminder: dd4hep/Marlin
 - Optimization
- Results
 - Power of separation
 - Reconstruction

More neighbours

	1	2	3	4	5	6	7	8	9	10
16.0	74.9%	64.2%	43.8%	19.9%	6.6%	1.9%	0.5%	0.2%	0.1%	0.0%
18.6	<u>75.3%</u>	65.2%	47.0%	22.4%	7.8%	2.3%	0.6%	0.2%	0.1%	0.0%
22.3	74.6%	65.4%	48.2%	23.7%	8.3%	2.4%	0.6%	0.2%	0.1%	0.0%

	1	2	3	4	5	6	7	8	9	10
16.0	<u>94.8%</u>	89.4%	83.3%	77.3%	71.9%	63.0%	49.8%	35.5%	22.3%	12.5%
18.6	89.4%	89.6%	83.8%	77.9%	72.4%	64.0%	51.5%	37.0%	23.5%	13.3%
22.3	75.7%	85.8%	82.8%	77.8%	72.3%	64.3%	52.3%	37.7%	24.3%	13.8%

	1	2	3	4	5	6	7	8	9	10
16.0	89.1%	97.5%	<u>97.6%</u>	96.3%	94.3%	92.2%	90.0%	87.4%	85.2%	81.9%
18.6	61.5%	89.2%	95.3%	95.6%	94.2%	92.3%	89.9%	87.4%	85.1%	82.0%
22.3	29.1%	70.8%	88.5%	93.3%	93.5%	91.9%	89.9%	87.4%	85.1%	82.0%

More neighbours

 $E = 0.5 \text{ GeV}, \Delta x = 50 \text{ mm}$

E = 1.5 GeV, $\Delta x = 50$ mm

 $E = 3.5 \text{ GeV}, \Delta x = 50 \text{ mm}$

More neighbours

	1	2	3	4	5	6	7	8	9	10
16.0	46.6%	72.9%	<u>77.3%</u>	74.8%	70.8%	62.2%	49.7%	35.5%	22.3%	11.7%
18.6	16.8%	48.6%	65.4%	69.2%	68.2%	61.7%	50.3%	36.7%	23.5%	12.6%
22.3	4.2%	25.2%	47.3%	58.0%	62.6%	58.5%	49.3%	36.5%	23.6%	12.8%

	1	2	3	4	5	6	7	8	9	10
16.0	<u>94.8%</u>	89.4%	83.3%	77.3%	71.9%	63.0%	49.8%	35.5%	22.3%	12.5%
18.6	89.4%	89.6%	83.8%	77.9%	72.4%	64.0%	51.5%	37.0%	23.5%	13.3%
22.3	75.7%	85.8%	82.8%	77.8%	72.3%	64.3%	52.3%	37.7%	24.3%	13.8%

	1	2	3	4	5	6	7	8	9	10
16.0	95.8%	89.1%	81.1%	74.4%	67.5%	58.6%	44.0%	29.2%	16.7%	8.4%
18.6	<u>96.5%</u>	90.5%	82.7%	75.4%	68.4%	59.9%	45.5%	30.6%	17.9%	9.3%
22.3	95.7%	90.8%	83.2%	75.9%	68.7%	60.1%	46.3%	31.5%	18.4%	9.7%

More neighbours

 $E = 1.5 \text{ GeV}, \Delta x = 30 \text{ mm}$

E = 1.5 GeV, $\Delta x = 50$ mm

E = 1.5 GeV, $\Delta x = 70$ mm

Power of separation

- Tune the parameter to fit
 - the (estimated) signal energy
 - Lower energy requires more neighbours
 - the requirement of separation
 - Closer showers require stricter cut
- To test the best performance w/o taking the clustering error into account, wide separated samples are used for vertex recon.
- $\Delta phi = 0.04 rad = 2.3^{\circ}$
- NNClustering parameters:
 - eCut = 1 MIP
 - dCut = 22, 18, 16 mm (for 0.5, 1.5, 3.5 GeV)

- Reminder: Reconstruction targets
- Reminder: dd4hep/Marlin
 - Optimization
- Results
 - Power of separation
 - Reconstruction

Reconstruction

- Still work in progress
 - Bin sizes...
 - Understanding the irregularities
 - Enlarge the search range to optimise the lower energetic ones?
- Backgrounds?

Backup

- ECAL-P: 540 × 90 × 90 mm³
 - X = 96 x 5.5 mm
 - $Y = 16 \times 5.5 \text{ mm}$
 - $Z = 20 \times 4.5 \text{ mm}$
 - $W = 3.5 \text{ mm} = 1.0 X_0$
 - Si = 0.320 mm

ECAL-P/E

ECAL-E layer (in sim.)

Material	d [mm]					
W	4.2					
C fibre	1.5					
Kapton	0.1					
Glue	0.1					
Air	0.1					
Si	0.5					
Air	0.1					
PCB	1.7					
ASICs	1.2					
Air	5.5 (or 0.5)					
Total	15					

ECAL-E perform. baseline

Intrinsic linearity

 $E_0 = p E_{dep}^n$