
Challenges in the atomic realm
• Can the disastrously bad N7 scaling of all-electron 

methods ever be overcome?
• Bring electron-atom (or ion) scattering theory to 

spectroscopic accuracy, comparable to the best 
treatments of bound state correlations?

• Compute electron-atom scattering lengths for any 
atom in the periodic table to within 10-20%?

Challenges in the molecular realm (diatomics & 
triatomics)
• Developing a theory and/or computational method that 

can determine the FULL electron-molecule scattering 
matrix including ALL fragmentation channels  ( e.g. in H2: 
e + H2+, H(n1 l1)+H(n2 l2), p + H-, etc.)

• Formulate a quantitatively accurate theory that can 
calculate the Born-Oppenheimer potential curves for 
two heavy open shell atoms, and their scattering lengths 
versus magnetic field

Few-body reactive processes, bound states, and resonances
• Develop an analytic zero-range interaction solution to the four-body 

problem, analogous to the well-known exact solution to the zero-range 3-
body problem

• Push numerical and/or analytical methods to treat more than 5 particles 
(e.g. atoms or nucleons), with or without spin, in their full Hilbert space
including collisions

Challenges ahead in 
atomic, molecular, and nuclear few-body physics

Chris H Greene, Purdue University
https://arxiv.org/a/greene_c_1.html



Atomic, 
Molecular, and 
Optical physics

Ultracold 
molecules and 

collisions

A theorist can organize his or her group’s interest 
by physics subfields, as indicated here, AND/OR, 

as in the next slide, by toolkits



Multichannel 
quantum defect 
theory (unified 

theory of bound 
states and 
continua, 

Seaton

An example of one toolkit that has grown 
and broadened in applicability to diverse 

problems, but probably no time to discuss 
this today….     

The Fano frame 
transformation 

theory

Atomic bound 
and ionization 

spectra, 
especially 
Rydbergs

Ultracold two-body 
collisions and 
Feshbach resonances



Adiabatic Treatments
+

Landau-Zener-
Stueckelberg 

couplings

Ordinary Born-
Oppenheimer

adiabaticity

A general approach, 
for any N-particle 
system:  treat the 

hyperradius R as the 
adiabatic coordinate!

3-body recombination of 
ultracold atoms, and the 
amazing Efimov effect

4-atom, 5-atom 
recombination

N electrons in 2D ~ 
fractional quantum 

Hall effect

N nucleons in nuclear 
bound states and 

reactionsHere are some of the 
theory directions 

stimulated by sensing 
the power of an 
unconventional 
idea/toolkit, and 

exploring where it 
might yield valuable 

insights.

In this case, it is the 
adiabatic toolkit, 

broadly interpreted



Many Big Goals have been formulated for the field of 
ultracold atoms over the past 3 decades, such as:

• Realize the BCS-BEC crossover, by using tunable Fano-
Feshbach resonances (accomplished!)

• Create a cold atom system that simulates high-Tc 
superconductivity, and helps to understand it. (not yet?)

• Realize the Fractional Quantum Hall effect with trapped 
atoms (perhaps only partially, in a sense)

• Simulate nuclear reactive processes, except with 
ultracold fermionic atoms instead of nucleons (not yet)



Challenges in the Realm of Few-Body Physics
**Current progress in the full treatment of N particles with short-range interactions 
has largely stalled at around 4 or 5 particles. Let’s push this to more complex systems.  

Limited bound state calculations for highly simplified Hamiltonians (e.g. Gaussian interactions) 
have occasionally treated more, e.g. up to around 8 or 10 particles.   Many more particles than that 
have been treated by a variety of Monte Carlo methods, but usually only the ground state.  

Treatments of collision/reactive  processes for 5 particles are highly limited (examples shown below), 
and for 6 particles even fewer, and usually with extreme approximations.

Why is this a hard problem?
The N-body Schroedinger equation with no external forces has dimension 3N-3, 
e.g. for 6 particles it is a 15-dimensional PDE.

Monte Carlo methods exist to solve for ground states in high dimensional problems, 
but those methods have difficulty to describe collision processes, especially reactive ones



One of our long-time goals has been to improve our ability to understand reactivity of all 
kinds for systems having more and more particles, e.g. in chemical or nuclear or cold atom
physics, reactions like:

A2+BCD→AB+AC+D  
or      →A2D+BC, etc.

This is the famous “N-body problem” in quantum mechanics

In FEW BODY PHYSICS, N might be 2 or 3 or 4 or 5 or …. 

We have pursued this goal primarily by improving what we call the 

“Adiabatic Hyperspherical Coordinate Toolkit”,

both a mathematical technique and a way to gain intuition



One Key Idea:  From Enrico Fermi – understanding the energy content of a single 

scattering event at low energies, i.e., what we now call 

THE FERMI PSEUDOPOTENTIAL (models short range 

interactions at very low energy)

From left to right: Oscar D'Agostino, Emilio 

Segrè, Edoardo Amaldi, Franco Rasetti and Enrico Fermi, 

from Wikipedia, the „Panispera Boys“

In the low energy limit of a particle 

colliding with another particle 

through only the S-wave, the 

energy of interaction is controlled 

by the scattering length a and can 

be represented by U.

https://en.wikipedia.org/wiki/Oscar_D%27Agostino
https://en.wikipedia.org/wiki/Emilio_Segr%C3%A8
https://en.wikipedia.org/wiki/Edoardo_Amaldi
https://en.wikipedia.org/wiki/Franco_Rasetti
https://en.wikipedia.org/wiki/Enrico_Fermi


The following discussion addresses a simple but 

fundamental question, for bosonic atoms:

We know that in 3D a certain minimum strength of 

attraction is needed in order to just barely bind two 

atoms into a stable molecular bound state.

One can ask, how much weaker does the attraction 

need to be in order to just barely bind 3 atoms 

together, and how much less still, to bind 4 atoms, or 

5 atoms, etc…
…AND moreover, how can these 

molecules get formed in a gas of 

trapped free atoms?



Extensions of Universal Physics to N>3 bosonic particles in 3D ---
Schroedinger’s equation with pair-wise additive forces:

9            8          7       6       5      4     3      2  

INCREASING ATTRACTION 
(the interaction parameter a gets more negative) →

Atom-atom scattering length

Can sometimes use:



MORE THAN 4 BOSONS: von Stecher’s J. Phys. B 

article in 2010: combined study using correlated 

Gaussians, and diffusion Monte Carlo

Clusters predicted 

up to N=13.

→increasing attraction→



12

To a mathematician, this would be 
called an “n-ball”, i.e. a sphere in n-
dimensions



H=

How to tackle 5-body recombination for 5 free bosonic 

atoms with pairwise additive forces?

i.e. the reaction A+A+A+A+A→ A3+A2 or A4+A or…

Start with the time-independent Schroedinger equation:

After eliminating the center-of-mass degree of freedom, we’re left 

with a 12-dimensional PDE to solve, which can be reduced to a 

mere 9 dimensions for J=0 states after going to the body frame.

So we go to hyperspherical coordinates with only one distance R
and 3N-4 hyperangles to represent the remainder



Strategy of the adiabatic hyperspherical representation:  FOR ANY NUMBER OF 

PARTICLES, convert the partial differential Schroedinger equation into an 

infinite set of coupled ordinary differential equations:

To solve: 

First solve the fixed-R 

Schroedinger equation, for 

eigenvalues Un(R):

Next expand the desired solution             

into the complete set of hyperangle

eigenfunctions with unknowns F(R)

And the original T.I.S.Eqn. is transformed into the following 

set which can be truncated on physical grounds, with the 

eigenvalues interpretable as adiabatic potential curves, in 

the Born-Oppenheimer sense.

This is a divide-and-conquer strategy: how to leverage bound state calculations to solve collision problems



Our group has advanced this approach to solving the many-

particle Schroedinger equation in diverse contexts, from 

chemical physics to Bose-Einstein condensates in ultracold 

science to the fractional quantum Hall effect, the 4-neutron 

problem, and very recently, to the 

5-boson problem

Hyperspherical Potential Energy Curve Examples

Simplest triatomic molecule 

(dissociative recombination of H3
+ )

Integer and fractional quantum Hall 

effect (2D electron gas in a B-field)

2015 Phys Rev B

2001 Nature



Short history of the Efimov effect for three identical bosons:

In 1970, Efimov considered the problem of 3 particles with a scattering length 
“a” tuned to infinity.  In this scenario, NO 2-body bound states exist in 3D.  
Nevertheless, Efimov predicted that an infinite number of 3-BODY bound 
states must exist.

This was not observed experimentally for several decades, until the 
possibility to CONTROLLABLY CHANGE the atom-atom scattering length ‘a’
became possible in an ultracold atomic gas, thanks to magnetic Feshbach 
resonances.

The spark that allowed the Efimov states to be observed in an ultracold gas 
came in a theory study that was studying something else, the 3-body 
recombination process in the gas, namely:

A + A + A → A2+A          …in late 1990s
which is the dominant loss process in a Bose-Einstein condensate (usually)



By 1999, our goal was to study 3-body recombination in an ultracold Bose gas, and find the 
systematics as well as possible ideas that might enable control of this dastardly loss process that 
was limiting the lifetime of BECs:   Esry, CHG, Burke, PRL 83, 1751 (1999), A+A+A→A2+A

Our first published predictions



Three-body recombination rate plotted as a “recombination length”, versus the atom-atom 
scattering length A, showing a prominent Efimov resonance in agreement with 3-body theory 

at A=-850 Bohr radii

Grimm group (Nature 2006) 
observation of an Efimov 

resonance in 3-body 
recombination Theory prediction (1999)
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Qualitative pictures of the 2-different quantum mechanisms for 3-body recombination

2 paths interfere at A>0 and 
produce destructive 
interference minima

Efimov shape resonance is 
trapped behind an 

effective potential barrier, 
producing Efimov 
resonances at a<0

a<0

Esry & CHG, 2006 Nature News & Views



After the 3-particle Efimov effect was proved correct, our attention turned to 
the 4-body problem next, as we realized that our divide-and-conquer 
hyperspherical strategy should work there too.

It took a major effort and a development of better ways to solve for the 
potential energy curves and nonadiabatic couplings, but we succeeded and 
were able to calculate 4-body recombination resonances, which had physics 
connected to Efimov states.

A very talented PhD student in my group, Javier von Stecher, spearheaded the 
treatment that solved the 4-body problem, and he was co-recipient of the 
DAMOP thesis award for that work.

Other theorists (especially Deltuva) have since confirmed that work and have 
carried out even much more accurate calculations of 4-boson recombination.

But there have been almost no calculations of 
5-body recombination, until very recently.



How Efimov physics extends to more than 3 particles.  This figure shows 

the schematic entrance channel potential curve expected for N particles 

at negative 2-body scattering length, From Mehta et al., 2009 PRL

Energy

Hyperradius, 
R ~ (Sum rij

2)1/2

For equal masses



Before we could actually calculate the rate of 4-body recombination in 

an ultracold gas, we had to develop some scattering theory:

And here it is, THE FORMULA for N-boson 

recombination, i.e. for the process:  

A+A+A+….+..A → AN-1+A  or AN-2+A+A +…etc.



Since 2006 – We initiated a concerted effort on the 4-
body problem using hyperspherical coordinates

Resulting 2009 papers:

PRA 80, 022504, (2009)

PRL 103, 033004, 2009

PRL 103, 153201 
(2009).

Nature Phys. 5, 417 (2009)

Phys. Rev. A 79, 
030501(R), (2009)



Technical Point:  How to solve this high-dimensional PDE at 
many different values of the hyperradius, in order to 
determine the potential energy curves U(R) and their 
couplings:  the correlated Gaussian hyperspherical method

This basis set has been the decisive tool, developed in Javier von Stecher’s thesis 
work.  Note that the Gaussian parameters in the basis set are determined 
stochastically.

The main difference from other Gaussian expansion calculations, e.g. by Suzuki and 
Varga, is that we have to perform all integrals at fixed hyperradius R, in the matrix 
elements of the fixed-R Hamiltonian.  But we have found a way to do those 
integrals for an arbitrary number of particles and dimensions analytically, except for 
one final 1D integral in the complex plane that still must be done numerically.



Extended Efimov plot 
showing universal 
dimer, trimer, and 

tetramer states of four 
identical bosons with 

short-range 
interactions.

Tetramer states 
predicted to hit zero 

energy at 

a=0.43 a(Efimov) 

and

a=0.90 a(Efimov)

Figure from Ferlaino & Grimm.  See also Ferlaino et al., PRL 
102, 140401 (2009) for experimental confirmation, and later 
theoretical extensions by Deltuva.

Two four-body states are found to lie between each successive pair 
of Efimov trimers - von Stecher et al. Nature Phys. 2009 – which 
confirms insightful work by Platter and Hammer (Eur. Phys. J. A. 

2007),  and extends it

Key 
finding:

3B

3B



Consistent with work of Platter and 
Hammer, we agree that there are:2, 3, and 4-body energy levels 

Hyperspherical   
4-body potential 

curves converging 
asymptotically to 

Efimov trimer 
levels at a→



And, after our four-body recombination 
resonance predictions were verified 
experimentally, we felt that one should try 
eventually to tackle 5-atom recombination 



Example of 5-body scattering theory (formalism only):
→ Formulated the Fadeev-
Yakubovsky coupled equations 
that would need to be solved.

Citations to date:    3   (all by Lazauskas and/or Carbonell)

This has only been applied to solve the 
simplest 5-body scattering problem, 
namely neutron+ 4He elastic scattering

Interesting result, a 
correlation 
between the 4He 
binding energy and 
the n-4He elastic 
scattering length

The amount of attention to the 5-body problem in collision 
physics has not been very extensive.  Here is one early reference.



Example calculation:  Probably THE most impressive and IMPORTANT 5-body reaction computed 
to date is the d+t →  +n nuclear fusion reaction, accomplished using the no-core shell 
model approach, plus huge computational resources 
(i.e. from the Lawrence Livermore National Laboratory (LLNL) institutional Computing Grand Challenge program)
As far as I am aware, this is probably the ONLY realistic computation of this 5-nucleon reaction 
carried out to date, and the reference below is the latest study, showing that by polarizing the 
colliding fragments, a large increase in efficiency results

Why is there ONLY ONE full 5-nucleon calculation 
to date that includes 3-nucleon interactions?  It is a 
high dimensional Hilbert space AND it is a problem 
in the scattering continuum.

2019



Adiabatic hyperspherical potential curves for 
5 cesium atoms, showing the entrance 5-
body continuum channels at W>0, and a 
bound 4+1 recombination channel that is 
negative beyond about R = 2 r0. Five-body recombination rate coefficient versus two-

body scattering length, showing a resonance in Cs5*

Our very recent article on a 5-atom reactive process



Comparison of 3, 4, and 5-body 
recombination loss rates, 
expressed as effective 3-body 
rates, for a realistic 
experimental cold Cs atom 
density.

Somewhat surprisingly, there 
are clear regions of the two-
body scattering length a where 
the dominant loss process is 
actually 5-body recombination

Note:  there are three 5-body 
recombination resonances per 
Efimov cycle



Our article with the Innsbruck group in 2013.  The first and only 

experimental observation of 5-body recombination (as far as I’m aware).

New Journal of Physics 15 (2013) 043040



0+

The most attractive hyperspherical potential curves for the 4n and 

3n systems, obtained using realistic n-n interaction potentials

The converged potentials are clearly totally repulsive, 

with no sign of a local maximum that can trap probability 

in a resonance.

HH expansion, unconverged at 

large r

Higgins, CHG, Kievsky, Viviani

PHYSICAL REVIEW LETTERS 125, 052501 (2020)

Totally repulsive 

potential energy curves 

we computed for the    

3-neutron and 4-

neutron systems, that 

we argue are a 

DISPROOF of any 

possible existence of a 

tri-neutron or a tetra-

neutron bound state or 

resonance.

Nuclear physics:  Does the 

tetraneutron exist?  Controversy!



PHYSICAL REVIEW C 111, 014001 (2025), Michael Higgins & CHG
Resonances and collisional properties of neutron-rich helium isotopes
in the adiabatic hyperspherical representation

Hyperradius

Adiabatic hyperspherical 
potential energy curves, energy 
versus hyperradius, for the 0+ 
symmetry of the 8He nucleus.

A goal for the future is to 
compute such potential energy 
graphs for the lowest few 
symmetries, for all nuclei up to 
A=8, as a way to visualize and 
compute reaction pathways in 
energy and position.

Our first 5-body 
calculation in nuclear 
physics:  the 8He nucleus



Future 6-body challenges for theory:

• Collision between two Efimov trimers at ultracold 
temperature (the best to date is a very approximate treatment by 
Naidon, Endo, and Garcia-Garcia 2016)

• Triton-Triton fusion reaction, t+t →  + n + n

• Note that there is a fully analytical solution of the 3-
body hyperangular problem with zero-range (S-wave) 
interactions, but a similar analytical solution has 
never been found for the 4-body problem.  This would 
be a desirable goal for theory to solve, if possible.



Conclusion:

Progress is underway to extend the predictive and 
analysis power of the adiabatic hyperspherical 
representation to handle more particles and more 
complex few-particle scenarios in both nuclear and 
atomic systems.

But these are hard problems and each bit of progress 
is hard-earned….

Thanks for listening!
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