ECAL Metrologies // T-frame and CF

Melissa Almanza, C. Blanch, S. Huang, A. Irles, Carlos Orero, Roberto Cano,

*AITANA group at IFIC – CSIC/UV

Metrologies

IFIC INSTITUT DE FÍSICA CORPUSCULAR

- T-frame + 6 CF: to measure gap between CF in top and bottom.
- T-frame: 3 rows of 12 tabs (top, middle and bottom)
- CF: HP ("high precision") and CF LP ("low precision")

- CF HP1 to CF HP6 mounted on T-frame ٠
- Top gap measured next to T-frame edge. .
- Bottom gap measured end of CF. •
- CMM equipment has 600 um width. Pictures where taken when ٠ both CF where on frame. Gaps bigger than 600um do not have picture.

IFIC INSTITUT DE EÍSICA CORPUSCULAR

• GAP_CF2-CF3 // GAP_CF4-CF5

INSTITUT DE FÍSICA C O R P U S C U L A R

- TFRAME_1_GAP_CF1-CF2 // TFRAME_2_GAP_CF1-CF2
- This pictures show the same gap (CF1 CF2) and T frame edge.
 - Left picture T frame edge is blurry: focus adjusted to CF borders
 - Right picture T frame edge is sharp: focus adjusted to edge.

IFIC INSTITUT DE FÍSICA CORPUSCULAR

- TFRAME_GAP_CF1-CF2 // TFRAME_GAP_CF2-CF3 // TFRAME_GAP_CF3-CF4
- TFRAME_GAP_CF4-CF5 // TFRAME_GAP_CF5-CF6

Results

- Very inconsistent gap length and way bigger than nominal.
- Results are coherent with:
 - CF smaller than nominal.
 - CF not located with accuracy (rotated)

T-frame

- 3 rows (identified as top, middle and bottom) with 12 tabs each
- Measured with a light setting to be able to see the chamfer on the top of the tab.

T-frame

IFIC INSTITUT DE FÍSICA CORPUSCULAR

- Measuring 8 points per tab (every 45° angle).
- Fitting those 8 points to a circle least-squares method (Mitutoyo software does it).
- Pictures taken for every point measured.

T-frame

11

- Pictures will be shared with you to take a closer look.
- 96 pictures of interest (8x12 = 96)
- There are 8 pictures of the points measured to define a PCS (Part Coordinate System): Origin (0,0) at first tab and CMM axes aligned with T frame.

Results: VLC-TFRAME_CMM_RESULTS.pdf // VLC-TFRAME_CMM_RESULTS.xlsx

							1	2	3	4	5 6	7	8	9	10
	Α	В	С	D	E	F	G Summary	80241122_08.17_19RAME_TOP_CIRCLES	SUMMARY_20241121_09_54_TRAME_1_MDDLE	LOROAS J	K	L L L	M	C6 1 N (C6 2	^
1		TOP CIRCLES	•				MIDDLE CIR	RCLES			BOTTOM CIRCLES				
2		X coord	ø	Roundness			X coord	ø	Roundness			X coord	ø	Roundness	В
3	C1_1	0.000815	5.992096	0.009013		C1_1	0.000806	5.981617	0.009935		C1_1	0.00004	5.989821	0.010648	
4	C1_2	47.008278	5.988629	0.00841		C1_2	47.007628	5.98047	0.005912		C1_2	47.0009	5.990876	0.016962	с
5	C2_1	90.215656	5.989385	0,011518		C2_1	90.21275	5.98105	0.00627		C2_1	90.20886	5.992143	0.008346	
6	C2_2	137.224445	5.98948	0.010966		C2_2	137.21445	5.982547	0.01318		C2_2	137.2105	5.991259	0.010757	
7	C3_1	180.431732	5.991298	0.009137		C3_1	180.42282	5.982943	0.006123		C3_1	180.4172	5.990562	0.008966	D
8	C3_2	227.438336	5.991234	0.011869		C3_2	227.42573	5.981387	0.009585		C3_2	227.4197	5.991301	0.004076	
9	C4_1	270.645742	5.991297	0.010687		C4_1	270.63265	5.983326	0.009147		C4_1	270.6235	5.990273	0.009097	E
10	C4_2	317.652812	5.990488	0.007403		C4_2	317.63575	5.983877	0.006206		C4_2	317.6266	5.990786	0.010494	
11	C5_1	360.855883	5.990204	0.00584		C5_1	360.83715	5.980677	0.006981		C5_1	360.8261	5.99127	0.006627	
12	C5_2	407.863978	5.992189	0.009828		C5_2	407.84129	5.981909	0.005767		C5_2	407.8312	5.992601	0.008195	F
13	C6_1	451.067479	5.989243	0.008563		C6_1	451.0451	5.981157	0.00823		C6_1	451.0306	5.988075	0.008094	
14	C6_2	498.074319	5.990329	0.009165		C6_2	498.04876	5.978079	0.005365		C6_2	498.0352	5.990173	0.010636	G
15															
16	l6 on spec										A_T-F				
17	17 out of spec					/ ^{C1_2}			C2_1/C2_1/C2_1			/C6_1		/C6_2	
18			/	/		/		/		/	/				

Results: VLC-TFRAME_CMM_RESULTS.pdf // VLC-TFRAME_CMM_RESULTS.xlsx

13

- CF lying flat over CMM glass stage.
- Light coming from the stage (to identify borders) and from top.
- Pictures taken for every point measured.
- 5 points to define an horizontal bottom line: LH
- 8 points to define a vertical left line: LV
- Origin (0,0) set as intersection of LH with LV.
- 5 points measured on top border and distance calculated to LH.
- 8 points measured on left border and distance calculated to LV.

- C1 (left) measured with 8 points spaced 45°.
- C2 (slotted hole, right part) measured with 6 points spaced 30°.
- C3 (slotted hole, left part) measured with 6 points spaced 30°.
- C2-C3 distance measured as slot length.
- PMC defined as middle point between C2-C3
- C1 distance measured to LH and LV
- C1 to PMC distance measured

15

Circularity:

- Circularity controls **the form** of a feature.
- In QVPAK (CMM vision software), circularity is reported as the zone bounded by the two closest concentric circles within which all data points on the surface lie. When all points are at the same distance from the center, the circularity equals zero.
- Circularity is not the error of our measurement.
- Our measurement error is around 1 um 3 um due to operator and CMM precision.

CF

Before showing CMM results, lets see some of the holes without referencing them (very time consuming). These belong to HP samples.

CF

Before showing CMM results, lets see some of the holes without referencing them (very time consuming). These belong to LP samples.

LP: low precision results

	LP1	LP2	LP3	LP4	LP5	LP6	LP7	LP8	LP9	LP10	X	Valor nominal
Linealidad L1	0.015	0.032	0.074	0.081	0.05	0.095	0.085	0.044	0.041	0.072	0.059	
Linealidad L2	0.003	0.022	0.026	0.028	0.061	0.074	0.018	0.025	0.02	0.058	0.033	
Distancia L1-PV1	89.881	89.848	89.726	89.817	89.921	89.821	89.726	89.846	89.811	89.956	89.835	90
Distancia L1-PV2	89.907	89.844	89.778	89.842	89.922	89.782	89.676	89.806	89.836	89.915	89.831	90
Distancia L1-PV3	89.903	89.848	89.802	89.831	89.944	89.764	89.729	89.799	89.81	89.899	89.833	90
Distancia L1-PV4	89.935	89.84	89.8	89.808	89.956	89.754	89.745	89.79	89.824	89.892	89.835	90
Distancia L1-PV5	89.938	89.81	89.821	89.796	89.947	89.712	89.737	89.749	89.822	89.873	89.821	90
Distancia L1-PV6	89.953	89.843	89.771	89.827	89.945	89.64	89.726	89.79	89.838	89.885	89.822	90
Distancia L1-PV7	89.975	89.85	89.794	89.799	89.969	89.676	89.717	89.77	89.815	89.885	89.825	90
Distancia L1-PV8	89.96	89.828	89.785	89.833	89.959	89.76	89.76	89.809	89.804	89.869	89.837	90
Linealidad PV	0.027	0.044	0.074	0.04	0.023	0.155	0.06	0.077	0.033	0.044	0.058	
Distancia L2-PH1	119.724	119.758	119.702	119.733	119.855	119.855	119.696	119.77	119.837	119.814	119.774	120
Distancia L2-PH2	119.729	119.785	119.729	119.703	119.807	119.86	119.684	119.805	119.828	119.765	119.769	120
Distancia L2-PH3	119.745	119.8	119.754	119.711	119.739	119.884	119.666	119.811	119.835	119.753	119.77	120
Distancia L2-PH4	119.733	119.782	119.763	119.706	119.758	119.91	119.658	119.799	119.848	119.736	119.769	120
Distancia L2-PH5	119.759	119.85	119.773	119.697	119.789	119.883	119.666	119.832	119.835	119.774	119.786	120
Linealidad PH	0.003	0.022	0.026	0.028	0.061	0.074	0.018	0.025	0.02	0.058	0.033	
Diámetro C1	6.12	6.102	6.132	6.137	6.114	6.176	6.115	6.156	6.151	6.15	6.135	6
Circularidad C1	0.047	0.049	0.035	0.034	0.106	0.031	0.043	0.068	0.056	0.042	0.051	
Diámetro C2	6.091	6.084	6.016	6.155	6.165	6.018	6.152	6.18	6.075	6.092	6.103	6
Circularidad C2	0.036	0.028	0.019	0.046	0.032	0.097	0.071	0.039	0.025	0.036	0.043	
Diámetro C3	6.084	6.162	6.1	6.156	6.134	6.14	6.157	6.169	6.133	6.103	6.134	6
Circularidad C3	0.001	0.015	0.015	0.021	0.027	0.002	0.02	0.028	0.018	0.02	0.017	
Distancia C2-C3	0.242	0.243	0.283	0.198	0.211	0.262	0.177	0.173	0.202	0.213	0.22	0.2
Distancia C1-PMC	47.016	47.012	47.026	47.028	47.056	46.995	46.984	46.994	47.02	47.035	47.017	47
Distancia L1-C1	21.426	21.282	21.232	21.351	21.374	21.24	21.317	21.279	21.326	21.316	21.314	21.5
Distancia L2-C1	109.815	109.856	109.755	109.771	109.906	109.851	109.773	109.811	109.811	109.839	109.819	110
RMS Distancia L1-PVX	0.032	0.014	0.028	0.017	0.017	0.059	0.025	0.029	0.012	0.028		
RMS Distancia L2-PHX	0.014	0.034	0.029	0.014	0.045	0.022	0.015	0.022	0.007	0.03		

HP: high precision results

	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9	HP10	X	Valor nominal
Linealidad L1	0.103	0.04	0.053	0.055	0.049	0.046	0.038	0.026	0.049	0.061	0.052	
Linealidad L2	0.022	0.056	0.02	0.053	0.005	0.013	0.002	0.013	0.019	0.047	0.025	
Distancia L1-PV1	89.652	89.958	89.875	89.935	89.877	89.783	89.793	89.765	89.686	89.812	89.814	90
Distancia L1-PV2	89.663	89.936	89.904	89.933	89.871	89.811	89.8	89.779	89.726	89.812	89.823	90
Distancia L1-PV3	89.709	89.94	89.859	89.933	89.889	89.803	89.783	89.764	89.753	89.813	89.825	90
Distancia L1-PV4	89.728	89.917	89.832	89.898	89.855	89.789	89.776	89.824	89.774	89.794	89.819	90
Distancia L1-PV5	89.752	89.941	89.821	89.906	89.848	89.754	89.775	89.798	89.771	89.804	89.817	90
Distancia L1-PV6	89.761	89.958	89.841	89.885	89.837	89.774	89.759	89.793	89.774	89.799	89.818	90
Distancia L1-PV7	89.806	89.955	89.863	89.898	89.865	89.778	89.79	89.782	89.741	89.821	89.83	90
Distancia L1-PV8	89.786	89.96	89.891	89.892	89.86	89.82	89.776	89.788	89.731	89.831	89.834	90
Linealidad PV	0.042	0.045	0.078	0.027	0.04	0.068	0.033	0.059	0.072	0.029	0.049	
Distancia L2-PH1	119.767	119.81	119.778	119.775	119.825	119.823	119.799	119.771	119.889	119.862	119.81	120
Distancia L2-PH2	119.756	119.796	119.752	119.76	119.816	119.822	119.77	119.76	119.867	119.849	119.795	120
Distancia L2-PH3	119.75	119.775	119.734	119.781	119.792	119.804	119.8	119.806	119.883	119.86	119.799	120
Distancia L2-PH4	119.776	119.801	119.742	119.809	119.792	119.794	119.806	119.873	119.853	119.884	119.813	120
Distancia L2-PH5	119.812	119.84	119.764	119.853	119.819	119.824	119.832	119.913	119.967	119.913	119.854	120
Linealidad PH	0.022	0.056	0.02	0.053	0.005	0.013	0.002	0.013	0.019	0.047	0.025	
Diámetro C1	6.072	6.067	6.064	6.07	6.052	6.034	6.047	6.061	6.058	6.053	6.058	6
Circularidad C1	0.064	0.075	0.032	0.063	0.037	0.037	0.013	0.018	0.029	0.035	0.04	
Diámetro C2	6.03	5.95	6.058	5.982	6.014	6.073	6.01	6.06	5.963	6.001	6.014	6
Circularidad C2	0.013	0.054	0.041	0.055	0.045	0.079	0.046	0.048	0.02	0.076	0.048	
Diámetro C3	6.03	6.044	6.04	6.038	5.991	6.02	5.993	6.004	6.022	6.088	6.027	6
Circularidad C3	0.069	0.043	0.029	0.049	0.038	0.026	0.025	0.023	0.04	0.156	0.05	
Distancia C2-C3	0.075	0.187	0.138	0.096	0.14	0.107	0.122	0.111	0.125	0.03	0.113	0.2
Distancia C1-PMC	46.948	47.066	47.001	47.019	46.946	46.991	46.97	46.96	46.94	47.033	46.987	47
Distancia L1-C1	21.313	21.368	21.376	21.334	21.45	21.285	21.283	21.351	21.376	21.333	21.347	21.5
Distancia L2-C1	109.697	109.843	109.812	109.86	109.822	109.865	109.858	109.745	109.908	109.872	109.828	110
RMS Distancia L1-PVX	0.055	0.015	0.029	0.02	0.016	0.022	0.013	0.02	0.03	0.012		
RMS Distancia L2-PHX	0.024	0.023	0.017	0.037	0.016	0.014	0.022	0.066	0.044	0.025		

Conclusions:

- I have to apologize. I haven't been able to analyze the results in detail.
- The precision and quality of the carbon fibers is poor or very poor.
- I really do not know what manufacturing procedures has followed our provider to manufacture the low and high precision samples because all of them are out of spec in many dimensions (length, diameter, position of centers...)
- Next steps:
 - Approach our CF provider with a report to:
 - Try to make sense of the metrologies. Understand what manufacturing procedures did they use and if it makes any sense with our metrology. For example, even though the low precision holes have sharper and nicer edges, their circularity is bad.
 - Depending of the reaction of the provider to our complain, we will decide to make more samples (for free of course).
 - Nonetheless, I do not know if it makes sense to continue working with this provider.

Thank you for your time.

22

- T-frame: Ø6g6 (5,988 5,996)
- Carbon Fiber: Ø6H7 (6,000 6,012)