
Nicole Hartman
nicole.hartman@tum.de

Train the Trainer workshop
17th Sept 2025

How to design (and debug) your ML model

Mastering Model Building

/ 672

Who am I? … and what got me into ML?

HH?

jet 1 jet 2 jet 3

H(bb) ?

ϕ

V(ϕ) Sets and transformers
for particle identification

 Generative models /
density ratio estimation

End-to-end optimizable analyses,
HEP’s foundation model 🦄

Ch 13 PhD thesis
Phys. Rev. D 108 (2023) 052003

MLST 5 025075 (2024)

2505.19689, accepted to Nature Comm
FTAG-2025-01, latest results

https://repository.cern/records/ar4jh-s6058
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/
https://arxiv.org/abs/2401.13536
https://arxiv.org/abs/2505.19689
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2025-01/

/ 67

In the context of science, the well-known adage “a
picture is worth a thousand words” might well be
“a model is worth a thousand datasets”

2001.04385

3

Elephant artwork curtesy of B. Hartman

/ 67

In the context of science, the well-known adage “a
picture is worth a thousand words” might well be
“a model is worth a thousand datasets”

2001.04385

3

This talk: How to
choose this model

Elephant artwork curtesy of B. Hartman

/ 67

What we’ll cover today

4

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

/ 674

/ 67

Starting off…

5

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 675

/ 67

Working example

6

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Underfitting

7

Model is not expressive enough

High training error

Training data Test data

Also high test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Overfitting

8

Model too expressive to generalize to unseen dataset
Training data Test data

Small (zero) training error High test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 679

Fit 2nd order polynomial to quadratic distribution

Optimal model complexity

Training data Test data

Small training error Also small test error

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

Bias / variance tradeoff

10

Model Complexity

Bias2

Total error
E

rr
or Variance

Optimal
balance

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

MSE(x) = 𝔼S,ξ [(y − hS(x))2]

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

CS 229 notes

= 𝔼 [(ξ + (h*(x) − hS(x)))2]

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

= 𝔼 [ξ2] + 2 𝔼[ξ] ⋅ 𝔼[h*(x) − hS(x)] + 𝔼 [(h*(x) − hS(x))2]

MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

CS 229 notes

= 𝔼 [(ξ + (h*(x) − hS(x)))2]

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

= 𝔼 [ξ2] + 2 𝔼[ξ] ⋅ 𝔼[h*(x) − hS(x)] + 𝔼 [(h*(x) − hS(x))2]

MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

0

CS 229 notes

= 𝔼 [(ξ + (h*(x) − hS(x)))2]

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Training dataset

•Truth labels
• : ground truth function

•

•Train model on dataset S
•Consider test point (x,y) and quantify the expected test error:

S = {x(i), y(i)}n
i=1

y = h*(x) + ξ
h*
ξ(i) ∼ 𝒩(0,σ2)

hS

Bias / variance tradeoff: maths 1

11

= 𝔼 [ξ2] + 2 𝔼[ξ] ⋅ 𝔼[h*(x) − hS(x)] + 𝔼 [(h*(x) − hS(x))2]

MSE(x) = 𝔼S,ξ [(y − hS(x))2] = 𝔼 [(h*(x) + ξ − hS(x))2]Defn of y

= σ2 + 𝔼 [(h*(x) − hS(x))2]

0

CS 229 notes

= 𝔼 [(ξ + (h*(x) − hS(x)))2]

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

•Let — the performance of the model trained on infinitely
many datasets

havg(x) = 𝔼S [hS(x)]
Bias / variance tradeoff: maths 2

12

MSE(x) = σ2 + 𝔼 [(h*(x) − hS(x))2]
= σ2 + 𝔼 [(h*(x) − havg(x) + havg(x) − hS(x))2]

= σ2 + (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]

No cross-term because
𝔼 [havg(x) − hS(x)] = 0

Bias2 Variance
Error on this class of models How does this instantiation compare

with the other possible ones?

CS 229 notes

= σ2 + 𝔼 [(h*(x) − havg(x))2 + ((havg(x) − hS(x))2]

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6713

MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
High bias: diagnostics

Bias2

The training error high,
even if we increase the
training data.

Linear fit

hS(x) = θ0 + θ1x

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6714

High variance: diagnostics

MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
Variance

5th order polynomial fit

hS(x) = θ0 + θ1x + θ2x2 + θ3x3 + θ4x4 + θ5x5

The training error
decreases as we increase
the training data.

Can learn to set these
coefficients to 0

CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 6715

MSE(x) = (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
Variance

Lots of possibilities for the fitted function depending on the random realization of training data.

High variance: intuition
CS 229 notes

https://cs229.stanford.edu/notes2022fall/main_notes.pdf

/ 67

What’s the culprit?

16

CS 229 Lecture

Training dataset size

E
rr

or

Training error

Desired performance

High bias?

High Variance?

PollEv.com/
nicolehartman968

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

17

CS 229 Lecture

Training dataset size

E
rr

or

Test error

Training error

Desired performance

High bias?

High Variance?

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

17

CS 229 Lecture

Training dataset size

E
rr

or

Test error

Training error

Desired performance

High bias?

High Variance?
Overfitting

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

17

CS 229 Lecture

Training dataset size

E
rr

or

Test error

Training error

Desired performance

High bias?

High Variance?

The error still decreases
as data increases

Overfitting

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

17

CS 229 Lecture

Training dataset size

E
rr

or

Test error

Training error

Desired performance

High bias?

High Variance?

The error still decreases
as data increases

Large gap between
training and test error

Overfitting

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

18

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

PollEv.com/
nicolehartman968

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

19

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

19

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

Underfitting

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

19

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

Underfitting

The training error is large.

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

What’s the culprit?

19

CS 229 Lecture

Training dataset size

E
rr

or High bias?

High Variance?
Test error

Training error

Desired performance

Underfitting

The training error is large.

Small gap between
training and test error.

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Starting off…

20

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 6720

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

very high learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

very high learning rate

low learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

very high learning rate

high learning rate

low learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Learning rate

21

α < ?

How to choose ?α

Minimize by SGDℒ
w = w − α∇wℒ ℒ

epoch

CS231n Lecture 6

Label the loss curves!📝
very high learning rate
high learning rate

low learning rate
good learning rate

very high learning rate

high learning rate

good learning rate

low learning rate

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Batch size

22

Minimize by SGDℒ
w = w − α∇wℒ

Make a MC estimate

CS231n notes

post

https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

/ 67

Batch size

22

Minimize by SGDℒ
w = w − α∇wℒ

Make a MC estimate

≈ w − α
m

∑
i=1

∇wℒ(xi, yi)

m: mini-batch size

CS231n notes

post

https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

/ 67

Batch size

22

Minimize by SGDℒ
w = w − α∇wℒ

Make a MC estimate

≈ w − α
m

∑
i=1

∇wℒ(xi, yi)

m: mini-batch size

CS231n notes

• As large as possible to still fit on the GPU.
• Powers of 2 for memory efficiency

Bigger batches reduces the error on the MC estimate

E.g, 256, 512, 1024

post

https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

/ 67

Batch size

22

Minimize by SGDℒ
w = w − α∇wℒ

Make a MC estimate

≈ w − α
m

∑
i=1

∇wℒ(xi, yi)

m: mini-batch size

CS231n notes

Intimately tied to learning rate!
If you increase the batch size by a factor of 2, scale by for a fair comparisonα

1
2

• As large as possible to still fit on the GPU.
• Powers of 2 for memory efficiency

Bigger batches reduces the error on the MC estimate

E.g, 256, 512, 1024

post

https://cs231n.github.io/optimization-1/#optimization
https://twitter.com/karpathy/status/1621578354024677377

/ 67

Early stopping

23

CS231n Lecture 7

ℒ

epoch

Train
Val

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Early stopping

23

CS231n Lecture 7

ℒ

epoch

Train
Val

Save model with
the best val loss

Val loss stops
improving

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Hyperparameter search

24

Already many options…

Medium article

1 Activations

4 Learning
rate

2

3 Nodes / layer

Number of
layers

+ many more!
in this talk and others!

https://samedhira.medium.com/activation-functions-cf6fef0e5922

/ 67

Hyperparameter search

24

Already many options…

Medium article

1 Activations

4 Learning
rate

2

3 Nodes / layer

Number of
layers

+ many more!
in this talk and others!

Coarse scan:
3 activations {sigmoid, ReLU, ELU}
x 3 layers {5, 10, 20}
x 4 nodes {10, 50, 250, 200}
x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}
x 2 {with and w/o scheduler}
x 10 K-fold cross validation (K=10)
= 3840 trainings !!!

https://samedhira.medium.com/activation-functions-cf6fef0e5922

/ 67

Hyperparameter search

24

Already many options…

Medium article

1 Activations

4 Learning
rate

2

3 Nodes / layer

Number of
layers

+ many more!
in this talk and others!

Coarse scan:
3 activations {sigmoid, ReLU, ELU}
x 3 layers {5, 10, 20}
x 4 nodes {10, 50, 250, 200}
x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}
x 2 {with and w/o scheduler}
x 10 K-fold cross validation (K=10)
= 3840 trainings !!!

https://samedhira.medium.com/activation-functions-cf6fef0e5922

/ 67

Hyper-parameter search

25

Grid Search Random Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Not all hyper-parameters are equal!

Image from CS231n lecture

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

/ 67

Hyperparameter strategies

26

CS231n DS

Fast prototyping
1. Start with a subset of the training dataset
2. Find parameters for a model that overfits
3. Start the random search around this point

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Hyperparameter strategies

26

CS231n DS

Fast prototyping
1. Start with a subset of the training dataset
2. Find parameters for a model that overfits
3. Start the random search around this point

Awesome paper

1906.04032

What worked for others?
Starting point random search

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Hyperparameter strategies

26

CS231n DS

Fast prototyping
1. Start with a subset of the training dataset
2. Find parameters for a model that overfits
3. Start the random search around this point

Awesome paper

1906.04032

What worked for others?
Starting point random search

Scan in log space

Coarse scan:
3 activations {sigmoid, ReLU, ELU}
x 3 layers {5, 10, 20}
x 4 nodes {10, 50, 250, 200}
x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}
x 2 {with and w/o scheduler}
x 10 K-fold cross validation (K=10)
= 3840 trainings !!!

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Hyperparameter strategies

26

CS231n DS

Fast prototyping
1. Start with a subset of the training dataset
2. Find parameters for a model that overfits
3. Start the random search around this point

Awesome paper

1906.04032

What worked for others?
Starting point random search

Scan in log space

Coarse scan:
3 activations {sigmoid, ReLU, ELU}
x 3 layers {5, 10, 20}
x 4 nodes {10, 50, 250, 200}
x 4 learning rates {1e-2, 3e-3, 1e-3, 3e-4}
x 2 {with and w/o scheduler}
x 10 K-fold cross validation (K=10)
= 3840 trainings !!!

Can automate!

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Starting off…

27

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Feature choices

Open question

Bias / variance trade-off
Statistical learning theory

✋
/ 6727

/ 6728

Models in the
Deep Learning Era

/ 67

The Deep Learning Revolution

29
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 201863

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”

Slide from CS231n Lecture 9

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

Natural Language Processing

30

2005.14165

Setting
LAMBADA

(acc)
LAMBADA

(ppl)
StoryCloze

(acc)
HellaSwag

(acc)

SOTA 68.0a 8.63b 91.8c 85.6d

GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. a[Tur20] b[RWC+19] c[LDL19]
d[LCH+20]

Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.

and [Tur20]) and argue that “continuing to expand hardware and data sizes by orders of magnitude is not the path
forward”. We find that path is still promising and in a zero-shot setting GPT-3 achieves 76% on LAMBADA, a gain of
8% over the previous state of the art.

LAMBADA is also a demonstration of the flexibility of few-shot learning as it provides a way to address a problem that
classically occurs with this dataset. Although the completion in LAMBADA is always the last word in a sentence, a
standard language model has no way of knowing this detail. It thus assigns probability not only to the correct ending but
also to other valid continuations of the paragraph. This problem has been partially addressed in the past with stop-word
filters [RWC+19] (which ban “continuation” words). The few-shot setting instead allows us to “frame” the task as a
cloze-test and allows the language model to infer from examples that a completion of exactly one word is desired. We
use the following fill-in-the-blank format:

Alice was friends with Bob. Alice went to visit her friend . ! Bob

George bought some baseball equipment, a ball, a glove, and a . !
When presented with examples formatted this way, GPT-3 achieves 86.4% accuracy in the few-shot setting, an increase
of over 18% from the previous state-of-the-art. We observe that few-shot performance improves strongly with model
size. While this setting decreases the performance of the smallest model by almost 20%, for GPT-3 it improves accuracy
by 10%. Finally, the fill-in-blank method is not effective one-shot, where it always performs worse than the zero-shot
setting. Perhaps this is because all models still require several examples to recognize the pattern.

12

GPT-3 Performance
Figure 3.2

With a training dataset
size of 500B words.

/ 67

Deep Learning philosophy…
Bigger = better

Train
the

Trainer
Train

the

Trainer

31 / 67

/ 67

Deep Learning philosophy…
Bigger = better

Train
the

Trainer
Train

the

Trainer

What about our
model complexity

discussion?

31 / 67

/ 67

ResNet building block

32

ResNets: 1512.03385
Slide CS231n lecture

weight layer

weight layer

ReLU

x

ℋ(x)

Normal layers

If layer isn’t needed,
need to learn the identity.

Degrades
performance!

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet building block

32

ResNets: 1512.03385
Slide CS231n lecture

weight layer

weight layer

ReLU

x

ℋ(x)

Normal layers

If layer isn’t needed,
need to learn the identity.

Degrades
performance!

Residual block

weight layer

ℱ(x)

ℱ(x) + x

x

weight layer

+

x

ReLU identity

Learn the correction factor
Solves the vanishing
gradients problem!

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet: performance

33

ResNets: 1512.03385
Slide CS231n lecture

Learn the correction factor

What do we gain???

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet: performance

33

ResNets: 1512.03385
Slide CS231n lecture

Learn the correction factor

Order of magnitude
increase in # of layers

What do we gain???

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet: performance

33

ResNets: 1512.03385
Slide CS231n lecture

Learn the correction factor

Order of magnitude
increase in # of layers

What do we gain???

🏋
Error decreases
by factor of two

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

ResNet: performance

33

ResNets: 1512.03385
Slide CS231n lecture

Learn the correction factor

Order of magnitude
increase in # of layers

What do we gain???

🏋
Error decreases
by factor of two

Crucial for almost every modern architecture from natural
language (1706.03762) to generative models (1906.04032).

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture09.pdf

/ 67

Regularization Techniques

34

How to restrict the optimization problem to help the NN generalize better.

/ 67

/ 67

Regularization

35

Occam’s razor for ML

ℒβ(w) = ℒ(w) + β ℛ(w)
Fit the training data Penalize complicated models

Hyperparameter governing
tradeoff of the two objectives.

When multiple models describe the training
data… choose the simplest one!

/ 67

L2 Regularization (most common for NNs)

36

ℒβ(w) = ℒ(w) + β |w |2

"Weight decay”

Encourages weights to be small

β |w |2

✅ Include in random search
(Log scale, e.g, = 0, 1e-6, 1e-4)β

= w − α∇w(ℒ + βw2)
w = w − α∇wℒλ

= (1 − 2β)w − α∇wℒ

Decay

/ 67

Dropout: intro

37

CS231n Lecture 7

Issue: Don’t want the NN to rely heavily on individual features

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

ML version of not
putting all your eggs

in one basket

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: idea

38

Original Network With dropout At training time, zero out
some neurons with dropout
fraction p

Hyperparameter we
need to optimize!

🏃
Issue: Don’t want the NN to rely heavily on individual features

CS231n Lecture 7

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: idea

38

Original Network With dropout At training time, zero out
some neurons with dropout
fraction p

Hyperparameter we
need to optimize!

🏃
Issue: Don’t want the NN to rely heavily on individual features

CS231n Lecture 7

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

✅ Encourages learning robust
features

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: idea

38

Original Network With dropout At training time, zero out
some neurons with dropout
fraction p

Hyperparameter we
need to optimize!

🏃
Issue: Don’t want the NN to rely heavily on individual features

CS231n Lecture 7

Srivastava et al, “Dropout: A simple way to prevent
neural networks from overfitting”, JMLR 2014

✅ Encourages learning robust
features

📝 At test time, use all the neurons
for prediction!!

Like training an ensemble of the NNs without being as €€€

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Dropout: performance

39

Regularization

Dropout, weight decay, use a smaller model

Tip: try overfit first, then try to close the gap between train and val.

Regularization

Dropout, weight decay, use a smaller model

Tip: try overfit first, then try to close the gap between train and val.

CS231n DS3

Overfit first — then try to close the gap!!

https://docs.google.com/presentation/u/1/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit?usp=sharing

/ 67

Batch Normalization

40

What about the features in the hidden layers?
“You want zero mean and unit variance operations? Just make them so!”

1502.03167
Stanford's CS 231n Lecture 6

At training time, normalize over
the activations of the minibatch

Original paper: inserted after
Fully Connected layers, and
before nonlinearity.

Additional learnable parameters
for the scale and shift: γ and β.

̂x(k) =
x(k) − 𝔼 [x(k)]

Var [x(k)]
yi,j = γj ̂xi,j + βj

Fully Connected

Batch Norm

Tanh

Fully Connected

Batch Norm

Tanh

⋯

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

/ 67

Batch Normalization

40

What about the features in the hidden layers?
“You want zero mean and unit variance operations? Just make them so!”

1502.03167
Stanford's CS 231n Lecture 6

At training time, normalize over
the activations of the minibatch

Original paper: inserted after
Fully Connected layers, and
before nonlinearity.

Additional learnable parameters
for the scale and shift: γ and β.

̂x(k) =
x(k) − 𝔼 [x(k)]

Var [x(k)]
yi,j = γj ̂xi,j + βj

For set / sequence data,
LayerNorm also useful

Fully Connected

Batch Norm

Tanh

Fully Connected

Batch Norm

Tanh

⋯

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf
https://arxiv.org/abs/1607.06450

/ 67

Weight sharing

41

Alternative architectures designed to reuse weights as suited for
the input data.
“Don’t relearn what you don’t need to”

CNNs

Talk tomorrow by Till!

Transformers
1706.03762

Deep Sets
1810.05165

RNNs

/ 67

Weight sharing

41

Alternative architectures designed to reuse weights as suited for
the input data.
“Don’t relearn what you don’t need to”

CNNs

Talk tomorrow by Till!

Transformers
1706.03762

Deep Sets
1810.05165

RNNs

/ 67

Data augmentation : motivation

42

Q: How can you modify your training data to artificially increase
your dataset size?

Recall: More training data reduces variance.

/ 67

Data augmentation : examples

43

1 Horizontal flips

CS231n Lecture 7

2 Random crops
and scales

3 Adjust contrast and brightness

Fun fact: the internet isn’t big
enough for training LLMs anymore!
Current research also is adding
data augmentations to the training.
— Tip from Oleg Filatov

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

/ 67

Data augmentation — physics

44

Less used in practice…
With a simulator and we can often get as many training examples as we want

ϕ

Example: Azimuthal
rotations

/ 67

Data augmentation — alternatives

45

Jet Images — Deep Learning Edition 1511.05190

1 Preprocess for uniformity

Issue: Larger models with more data take longer to train
➡ Remove the variation to train faster.

2 Architecture design to
preserve invariants

L-GATr: 2405.14806 and Jonas’s talk
LorentzInvariance: Lorentz Net and ParT 2202.03772
Azimuthal Symmetry: 2107.02908
+ many others

https://arxiv.org/pdf/2405.14806

/ 67

Fine-tuning / transfer learning

46

Particle ID

x 20 million
95% accurate

x 200 thousand

Particle ID
75% accurate

Original Task Modified task

😣

Actual example from my PhD!!

/ 67

Fine-tuning / transfer learning

46

Particle ID

x 20 million
95% accurate

x 200 thousand

Particle ID
75% accurate

Original Task Modified task

😣

Fine-tuning (1) Start with weights optimized
with the larger dataset.

Actual example from my PhD!!

/ 67

Fine-tuning / transfer learning

46

Particle ID

x 20 million
95% accurate

x 200 thousand

Particle ID
75% accurate

Original Task Modified task

😣

Fine-tuning (1) Start with weights optimized
with the larger dataset.

(2) Adjust weights
with the smaller
dataset.

x 200 thousand

Particle ID

Actual example from my PhD!!

/ 67

Fine-tuning / transfer learning

46

Particle ID

x 20 million
95% accurate

x 200 thousand

Particle ID
75% accurate

Original Task Modified task

😣

Fine-tuning (1) Start with weights optimized
with the larger dataset.

(2) Adjust weights
with the smaller
dataset.

x 200 thousand

Particle ID

🥳95% accurate (3) Enjoy increase
in performance!

Actual example from my PhD!!

/ 67

Fine-tuning / Transfer learning: chatGPT

47

Original Task

Fine-tuning

Train on the corpus
of the whole internet

Fine-tune weights
on the chatbot
converations

GPT-5

chatGPT

My conversation with
chatGPT from Monday

“A foundation model is any model that is trained on broad data (generally
self-supervision at scale) that can be adapted (e.g, fine-tuned) to a wide
range of downstream tasks.”

2108.07258

https://arxiv.org/abs/2108.07258

Fact

1.4 - 2x increase in background
rejection with finetuning

Stats limited analysis,
↓ bkg by 2x same effect as ↑ by 2x

Z ∼ S/ B
ℒ

49

M. Vigl, NH, L. Heinrich

2401.13536

Standard HEP
Fix tagger, then train analysis

https://arxiv.org/abs/2401.13536

K. Terao slide
2502.02558

50

Neutrino physics (DUNE)
Pre-training: unlabelled data

Maybe don’t even need to finetune! “ 0 shot tranfer”
Linear probing

https://docs.google.com/presentation/d/1A6RMXXNE5A410XVBYMonW8Y0OGv3jPZULEpVF2KoWug/edit?slide=id.g3644502a531_0_5153#slide=id.g3644502a531_0_5153
https://arxiv.org/abs/2502.02558

The Q: Build big or build smart?

Mini ws on foundation models: https://indico.ph.tum.de/event/7906/timetable/

Month-long program: https://www.munich-iapbp.de/activities/activities-2025/machine-learning

Workshop ongoing in Munich, 25.8 — 19.9

https://indico.ph.tum.de/event/7906/timetable/
https://www.munich-iapbp.de/activities/activities-2025/machine-learning
http://www.apple.com

/ 67

Ensembles: how to quantify the error on your model

52

L

wiDeep ensembles error: Variance of the
predictions from different local minima

Random initialization

Converged weights

∂L /∂ wi at init—

MSE(x) ≈ (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
Variance

1912.02757

/ 67

Ensembles: Application

53

ATL-PHYS-PUB-2020-003

���

���

���

F�
MH
W�U
HM
HF
WLR
Q

$7/$6��6LPXODWLRQ�3UHOLPLQDU\
0
V � ����7H9��W űW

511,3
',36

��� ��� ��� ��� ���
E�MHW�HIILFLHQF\

����
����

5
DW
LR
�WR

5
1
1
,3

Probe whether the result of an
experiment is meaningful or a
random fluctuation.

Width = std dev of 5 NN trainings

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

/ 67

Ensembles: Application

54

HDBS-2019-29

Use the variation of
trainings as a
nuisance parameter

Tr
ai

ni
ng

 /
Av

er
ag

e
Single Training
Standard Deviation
Average

mHH [GeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/

/ 67

Starting off…

55

Going deeper

✋ Would love feedback +
discussions!

Training techniques

Open question

Bias / variance trade-off
Statistical learning theory

✋

Feature choices

/ 6755

/ 67

Log transform: motivation

56

Ex: b-tagging input features

log (pT
frac) scaled log (pT

frac)pT
frac ≡ pT

jet/ pT
jet

ΔR(trk, jet) log (ΔR) scaled log (ΔR)

Power law
distributions

With the log, become bell-shape

Normalizing encourages
inputs to be close to the

activation functions
As Johannes explained

🧐 Somewhat HEP specific
which often have features
with these falling spectra

/ 67

Log transform: motivation

57

Train pT
frac and ΔR Train log pT

frac and log ΔR

How does this help? 20% speed up in training time!

/ 67

Sample dependence

58

Issue: Want a classifier that is performant over a range of energies
E

nt
rie

s

Jet pT [GeV]

l-jets
b-jets

/ 67

Sample dependence

58

Issue: Want a classifier that is performant over a range of energies
E

nt
rie

s

Jet pT [GeV]

l-jets
b-jets

b
/ l

ig
ht

Jet pT [GeV]

1

Ratio: r

/ 67

Sample dependence

58

Issue: Want a classifier that is performant over a range of energies
E

nt
rie

s

Jet pT [GeV]

l-jets
b-jets

b
/ l

ig
ht

Jet pT [GeV]

1

Ratio: r

wi = wi − α
M

∑
j=1

1
r(p(j)

T)
∇wℒj

sample weight l-jets:
b-jets: = b/l ratio

r = 1
r

/ 67

Ablation studies: What has the model learned?

59

CS 229 Lecture

Example — spam classification

18,820

TK
Thomas Kuhr
TTT workshop
⋯

RC
Random Company
Useless Ad

⋯

❌ Spam

✅ Not Spam

baseline:
94.0% accuracy

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Ablation studies: What has the model learned?

59

CS 229 Lecture

Example — spam classification

18,820

TK
Thomas Kuhr
TTT workshop
⋯

RC
Random Company
Useless Ad

⋯

❌ Spam

✅ Not Spam

baseline:
94.0% accuracy

Overall system:
99.9% accuracy

😀

What made the
difference?

NN ❌ Spam

✅ Not Spam
Feature
engineering

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Ablation studies

60

CS 229 Lecture

18,820Remove features from the model…
and see what breaks it!

Email text parser: most
important feature!

https://cs229.stanford.edu/materials/ML-advice.pdf

/ 67

Debugging exercise

61

[If ⏰ permits]

/ 67

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not learning: gradients not
applied to the weights

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

More extreme case of
overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not converged yet: need
longer training

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

More extreme case of
overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not converged yet: need
longer training

Not learning: gradients not
applied to the weights

Slow start

Overfit: model too large /
dataset too small

More extreme case of
overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not converged yet: need
longer training

Not learning: gradients not
applied to the weights

Slow start: initialization
learning rate too small

Slow start

Overfit: model too large /
dataset too small

More extreme case of
overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Loss curves — what are the problems?

62

CS231n DS3

Loss curvesHypotheses

Not learning: gradients not
applied to the weights

Overfit: model too large /
dataset too small

Not converged yet: need
longer training

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Why flat
here?

iterationsiterationsiterations

iterations
iterations iterations

Not converged yet: need
longer training

Not learning: gradients not
applied to the weights

Slow start: initialization
learning rate too small

Applied the negative of
the gradients

Slow start

Overfit: model too large /
dataset too small

More extreme case of
overfitting

https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit#slide=id.p

/ 67

Starting off…

63

Going deeper

✋ Would love feedback +
discussions!

Training techniques

LLMs and largest
HEP models?

Bias / variance trade-off
Statistical learning theory

✋

Feature choices

/ 6763

/ 6764

[One of the]

Outstanding deep questions
in deep learning.

/ 67

Double Descent

65

post

Probably less relevant for
physics applications
‣ Likely our models not big enough
‣ Label noise not common

1912.02292

https://twitter.com/daniela_witten/status/1292293122752262145?lang=en

/ 67

Double descent in HEP

66

M. Vigl & L. Heinrich,
2509.01397

Training particle
regression (jet pt)

• 200k jets (3 orders of
magnitude smaller than
SOTA datasets)

• order of mag more
param than currently
explored

Lesson: we are far from overparametrized in science!

https://www.arxiv.org/pdf/2509.01397

/ 67

What did we learn today about choosing the right model?

67

/ 67

What did we learn today about choosing the right model?

67

Total error = Bias2 + Variance
Underfitting Overfitting

/ 67

What did we learn today about choosing the right model?

67

Total error = Bias2 + Variance
Underfitting Overfitting

Deep learning gains:
increasing complexity

/ 67

What did we learn today about choosing the right model?

67

Total error = Bias2 + Variance
Underfitting Overfitting

Deep learning gains:
increasing complexity Regularization:

✓ L2 regularization
✓ Dropout
✓ Batch Norm
✓ Fine-tuning

/ 67

What did we learn today about choosing the right model?

67

Total error = Bias2 + Variance
Underfitting Overfitting

Deep learning gains:
increasing complexity Regularization:

✓ L2 regularization
✓ Dropout
✓ Batch Norm
✓ Fine-tuning

Training 101: Monitor loss curves for learning rate Use random search for hyper-parameters
Use ensembles - Model performance

- Error

/ 67

Backup

/ 6769

CS 229 notes

MSE(x) = σ2 + (h*(x) − havg(x))2 + 𝔼 [(havg(x) − hS(x))2]
High bias: diagnostics

0

The training error on the
linear model still large, even
when there is no noise on the
training data.

/ 67

How to train?

70

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

/ 67

How to train?

70

Train Test

w = w − α∇wℒ
Minimize by SGDℒ Issue: Don’t want to

look at the test set
while optimizing!!

/ 67

How to train?

70

Train Test

w = w − α∇wℒ
Minimize by SGDℒ Issue: Don’t want to

look at the test set
while optimizing!!

Val

/ 67

How to train?

70

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

Start with: 60 / 20 / 20

Issue: Don’t want to
look at the test set
while optimizing!!

Val

/ 67

How to train?

70

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

Image by brgfx on Freepik

Want a large training
dataset to minimize .ℒ

Want a large enough validation
set for statistically significant

generalization metric.

Start with: 60 / 20 / 20

Issue: Don’t want to
look at the test set
while optimizing!!

Val

https://www.freepik.com/free-vector/cartoon-character-boy-girl-playing-seesaw-white_12851971.htm#query=see%20saw&position=0&from_view=keyword

/ 6771

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

retrainHow to maximize statistics?

Val

/ 6771

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

retrainHow to maximize statistics?

Val

on K splits for the dataset ℒ

Train

Model 1

Model 2

⋯
ℳ1

ℳ2

ℳK

Val

TrainVal

Val TrainModel K

/ 6771

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

retrainHow to maximize statistics?

Val

on K splits for the dataset ℒ

Train

Model 1

Model 2

⋯
ℳ1

ℳ2

ℳK

Val

TrainVal

Val TrainModel K

K-fold cross validation

/ 6771

Train Test

w = w − α∇wℒ
Minimize by SGDℒ

retrainHow to maximize statistics?

Val

on K splits for the dataset ℒ

Train

Model 1

Model 2

⋯
ℳ1

ℳ2

ℳK

Val

TrainVal

Val TrainModel K

K-fold cross validation

ℳ =
1
K

K

∑
i=1

ℳi

At test time, average the
predictions from the models

Ensembling helps
performance!

✓ Couple percent gain in accuracy
✓ Used in Kaggle competitions!

/ 67

Loss landscape

72

CS221 Lecture

Linear functions Neural networks

(non-convex)(convex loss)

https://stanford-cs221.github.io/autumn2019/lectures/index.html#include=learning2.js&mode=print1pp

/ 67

Saliency maps

73

1312.60342

• NN: nonlinear function

• Approximate as a linear classifier
by using a Taylor expansion.

Sc(I) ≈ θTI + b

∂Sc

∂I
I0

θ =

/ 67

Saliency maps

73

1312.60342

• NN: nonlinear function

• Approximate as a linear classifier
by using a Taylor expansion.

Sc(I) ≈ θTI + b

∂Sc

∂I
I0

θ =

Saliency map: Plot the for
each of these inputs

|θ |

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013

test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013

test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

/ 67

Saliency maps

74

Physics Maths

ATL-PHYS-PUB-2020-014

b-jets with failing the 77% efficiency cut

ATLAS Simulation Preliminary
 √s = 13 TeV,t t̄

Nature 600, 70–74 (2021)

Use saliency maps to postulate new
conjectures which could then become
new math theorems!

Understand what the model
has learned about this
particle ID task.

https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-021-04086-x

Model diagnostic
Saliency Maps

Saliency maps

76

1312.6034

What has DIPS learned about b-jets?

Saliency definition

77

ATL-PHYS-PUB-2020-014

What has DIPS learned about b-jets?
b-jets with 8 tracks failing the
77% b-tagging working point

Largest sd0 Smallest
sd0

ATLAS Simulation Preliminary
 √s = 13 TeV, tt

● Consider b-jets failing the 77% WP

● Average over jets with 8 tracks
● Sort the tracks by sd0 for the average

xxx

78

CS 221

2017: Stanford AI course

https://stanford-cs221.github.io/autumn2019/lectures/index.html#include=overview.js&slideIndex=89

2020: Natural Language Processing

Setting
LAMBADA

(acc)
LAMBADA

(ppl)
StoryCloze

(acc)
HellaSwag

(acc)

SOTA 68.0a 8.63b 91.8c 85.6d

GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. a[Tur20] b[RWC+19] c[LDL19]
d[LCH+20]

Figure 3.2: On LAMBADA, the few-shot capability of language models results in a strong boost to accuracy. GPT-3
2.7B outperforms the SOTA 17B parameter Turing-NLG [Tur20] in this setting, and GPT-3 175B advances the state of
the art by 18%. Note zero-shot uses a different format from one-shot and few-shot as described in the text.

and [Tur20]) and argue that “continuing to expand hardware and data sizes by orders of magnitude is not the path
forward”. We find that path is still promising and in a zero-shot setting GPT-3 achieves 76% on LAMBADA, a gain of
8% over the previous state of the art.

LAMBADA is also a demonstration of the flexibility of few-shot learning as it provides a way to address a problem that
classically occurs with this dataset. Although the completion in LAMBADA is always the last word in a sentence, a
standard language model has no way of knowing this detail. It thus assigns probability not only to the correct ending but
also to other valid continuations of the paragraph. This problem has been partially addressed in the past with stop-word
filters [RWC+19] (which ban “continuation” words). The few-shot setting instead allows us to “frame” the task as a
cloze-test and allows the language model to infer from examples that a completion of exactly one word is desired. We
use the following fill-in-the-blank format:

Alice was friends with Bob. Alice went to visit her friend . ! Bob

George bought some baseball equipment, a ball, a glove, and a . !
When presented with examples formatted this way, GPT-3 achieves 86.4% accuracy in the few-shot setting, an increase
of over 18% from the previous state-of-the-art. We observe that few-shot performance improves strongly with model
size. While this setting decreases the performance of the smallest model by almost 20%, for GPT-3 it improves accuracy
by 10%. Finally, the fill-in-blank method is not effective one-shot, where it always performs worse than the zero-shot
setting. Perhaps this is because all models still require several examples to recognize the pattern.

12

GPT3, Fig 3.2

Generative
Pre
Training

GN2 (2m) GN3 (13m)

Comparing w/ size of
SOTA jet tagging models

20252023

https://arxiv.org/abs/2005.14165

2021: Foundation models

“From a technological point of view, foundation models are not new… however, the sheer scale and scope of
foundation models from the last few years have stretched our imagination of what is possible.”

“We introduce the term foundation models to fill a void in describing the paradigm
shift we are witnessing…”

Percy
Liang contact

author

https://arxiv.org/abs/2108.07258

Dynamic Graph CNN
“ParticleNet” [CMS]

Huilin Qu’s slide

Model the jet as a
point cloud X→YH→4b: CMS-B2G-21-003

ggF/VBF HH(4b): CMS-B2G-22-003

82

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html

Dynamic Graph CNN
“ParticleNet” [CMS]

Huilin Qu’s slide

Model the jet as a
point cloud X→YH→4b: CMS-B2G-21-003

ggF/VBF HH(4b): CMS-B2G-22-003

VBF HH→4b
First analysis

excluding κ2V = 0

ggF HH→4b

Boosted:
Obs (exp): 9.9 (5.1)

Resolved:
Obs (exp): 5.4 (8.1)
Obs (exp): 3.8 (7.8)

Very impressive physics results
But was the graph representation needed?

82

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html

How did this story evolve for neutrino identification?

Quarks

Leptons

Forces

Also in jet tagging (ATLAS and CMS), transformers outperform GNN architectues.

All three of the winning solutions
used a transformer architecture.

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://arxiv.org/pdf/2310.15674

Analysis

HEP reconstruction is trained on broad data
that can be adapted (e.g, optimize working
points) to a wide range of downstream
analyses.

Classifier efficiency
operating points

Tight / loose

Reconstruction

Each of analysis chooses their own
operating points (grad student descent).

Analysis

HEP reconstruction is trained on broad data
that can be adapted (e.g, optimize working
points) to a wide range of downstream
analyses.

Classifier efficiency
operating points

Tight / loose

Reconstruction

Each of analysis chooses their own
operating points (grad student descent).

Foundation models: can we let gradients
do our work for us? “Fine-tuning”

∇ϕℒ

background
rejection =

1

How to read?

Better

86

Fact

Standard HEP
Fix tagger, then train analysis

A better baseline tagger improves
the analysis even more (!)

🌈

87

Fact

Standard HEP
Fix tagger, then train analysis

A better baseline tagger improves
the analysis even more (!)

🌈

87

👶How do build the
foundation model

88

Much more
data hungry!

Train from scratch (eventually)
get the same performance as

the finetuned model.

Universal approximation
theorem for NNs

88

Much more
data hungry!

Train from scratch (eventually)
get the same performance as

the finetuned model.

Universal approximation
theorem for NNs

"dumb from-scratch model"
eventually surpasses the standard
HEP workflow with enough data
Same hierarchy of conclusions for both the vector
and vector + HLF trainings backup

88

Much more
data hungry!

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

89

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

89

🧊Std
analysis

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

Include 128d
latent space

89

🧊Std
analysis

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

Include 128d
latent space

89

End-to-end
analysis

S/ B : increases significance by
40%!

Decreases bkg by 2x …

🧊Std
analysis

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

Include 128d
latent space

89

End-to-end
analysis

S/ B : increases significance by
40%!

Decreases bkg by 2x …

🧊Std
analysis

More pretraining
data A better Higgs tagger helps

analysis performance

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general

ar
X

iv
:2

40
1.

13
53

6v
2

 [h
ep

-e
x]

 2
5

Ja
n

20
24

Include 128d
latent space

89

End-to-end
analysis

S/ B : increases significance by
40%!

Decreases bkg by 2x …

🧊Std
analysis

More pretraining
data A better Higgs tagger helps

analysis performance

Start from
random NN

weights

But training from scratch, with
enough data, will surpass
traditional analyses.

M. Vigl, NH, L. Heinrich

2401.13536

https://arxiv.org/abs/2401.13536

/ 67

Fine-tuning / Transfer learning

90

2203.06210

6 F. A. Dreyer, R. Grabarczyk, P. Monni: Leveraging universality of jet taggers through transfer learning

Table 2. Benchmarks for top tagging with pT > 500 GeV. The di↵erent columns show the AUC for the di↵erent transfer
learning models considered in the text, where FT denotes the fine-tuning option, FR denotes the frozen-layer option, and the
(10%) superscript refers to results obtained with just one tenth of the original training data.

AUC AUCFT AUCFR AUC(10%) AUC(10%)
FT AUC(10%)

FR

LundNet3 (from top 2 TeV) 0.9820 0.9820 0.9816 0.9773 0.9802 0.9791
LundNet5 (from top 2 TeV) 0.9866 0.9865 0.9863 0.9826 0.9850 0.9845
LundNet5 (from W 500 GeV) - 0.9863 0.9858 - 0.9834 0.9832
ParticleNet (from top 2 TeV) 0.9826 0.9826 0.9793 0.9765 0.9795 0.9772

tude smaller than that needed to train a similarly perform-
ing LundNet model from scratch. Importantly, the di↵er-
ence between the fully trained model and the fine-tuning
and frozen-layer transfer learning setups is rather mod-
erate in the case of LundNet5, which indicates that such
class of models have rather high transferability and they
can easily be retrained on a di↵erent task. In the case of
ParticleNet, we observe that the fine-tuning setup still
produces AUC values higher than those of the model fully
trained on smaller data sets, although it does not reach
the tagging accuracy observed for LundNet5. Moreover,
Fig. 4 also shows that the performance of ParticleNet
gets significantly worse when using the frozen-layer setup,
with the fully trained model outperforming the transfer
learning results already for a training done on 105 events,
while LundNet5 reaches almost the asymptotic values of
AUC for this data sample (see also Tab. 2). Overall, this
clearly shows that the use of transfer learning provides a
promising avenue to reduce the amount of data required
to train new taggers, with certain classes of models such as
LundNet being more suitable for the application of these
techniques. Whether it is possible to define a metric quan-
tifying a priori the ability of a model to be transferred
to a di↵erent task with reduced computational resources
than those needed for a full training, and how to construct
better taggers with such features remain interesting open
questions.

Fig. 4. Area under the ROC curve as a function of the total
signal and background training data set size.

We now move on to study the ROC curves corre-
sponding to the di↵erent models in Fig. 5, showing the
background rejection 1/"QCD versus signal e�ciency,

"Top. A better performing tagger has a corresponding
ROC curve closer to the top-right corner of the figure.
The upper panel shows the ROC corresponding to the
models LundNet3, LundNet5 and ParticleNet all trained
from scratch for a top tagger with pT > 500 GeV. We
observe that, as expected, LundNet5 performs better than
the other two models, which achieve a very similar perfor-
mance. This is due to the additional information stored
in the tuples associated with each node of the graph (see
Eq. (3)). The second panel of Fig. 5 shows the ROC
obtained with LundNet5 and di↵erent transfer learning
options from a top tagger with pT > 2 TeV, divided by
the ROC of the model trained from scratch (shown in the
upper panel). The dashed blue line corresponds to the
fine-tuning setup in which all weights are re-trained on
the new task. This option clearly reproduces the perfor-
mance of the tagger trained from scratch, but as already
observed before it does not lead to any reduction of the
computational complexity associated with the training.
The dotted blue line, instead, corresponds to the transfer
learning obtained with the frozen-layer setup which, as
already observed in Tab. 2, leads to a performance that
is very close to that of the original model, with an AUC
less than a permille below the full model, and background
rejection at intermediate signal e�ciencies within 20% of
the fully trained tagger. This performance remains far
better than most state-of-the-art jet taggers, and orders
of magnitude above analytic substructure discriminants.

The remaining three panels in Fig. 5 show a similar
comparison in the case of LundNet3 and ParticleNet
models transferred from a top tagger with pT > 2 TeV,
and LundNet5 models transferred from a W -boson tag-
ger with pT > 500 GeV. For the fine-tuned W , the initial
learning rate is set to 3 · 10�4 to allow for a larger per-
turbation of the pre-trained top model. All of the above
four panels also report, in red, the result obtained with a
reduced training data set of 10% of the original size, i.e.
105 events, with either the fine-tuning (dashed) or frozen-
layer (dotted) setup. For LundNet, the plot confirms the
conclusions drawn from the AUC study above, showing
that these models (both for LundNet3 and LundNet5) still
reach the performance of state-of-the-art taggers also in
the transfer learning setups, with the frozen-layer setup
being only moderately less accurate than the computa-
tionally more demanding fine-tuning. While it is clearly
easier to transfer a model from a similar tagger trained on
a di↵erent kinematic regime, we see that transfer learn-
ing still reaches highly competitive ROC curves also when
the starting model is a W tagger, shown in the last panel

Better!

Lecture 2: NNs and pytorch

Types of data

91

p(y |X), y ∈ ℝ Ex: Housing prices

p(y |X), y ∈ [class1, class2,…]
Regression

Classification

NEXT: Multi-class classification

y = [cat, dog]
Yesterday: Binary classification

y = []not furnished, furnished, semi-furnished

Perceptron:
fθ(x) = σ(θT x)

Lecture 2: NNs and pytorch

Beyond two classes…

92

Extending the sigmoid…
what if we have more than

just cats and dogs?

Lecture 2: NNs and pytorch

Targets: One hot vector!

93

🔥
Same idea… more cases!

y = (
1
0
0)

y = (
0
1
0)

y = (
0
0
1)

Specify the non-zero index
in a set of classes

Fun fact!!
How you specify words in a dictionary
for training language models

1
0
0
0
⋮
0

a =

0
1
0
0
⋮
0

aardvark =

0
⋮
0
1
0
⋮
0

exciting = ⋯

Lecture 2: NNs and pytorch94

Linear models

z = wT x, x, w ∈ ℝd, z ∈ ℝ

z = Wx, x ∈ ℝd, W ∈ ℝK×d, z ∈ ℝK

Multi-dimensional linear models

Prediction: multidimensional outputs…

Example: K = 3

z2: “dog-like”

z3: “frog-like”

z1: “cat-like”

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

95

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

logits

z2: “dog-like”

z3: “frog-like”

z1: “cat-like”

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

95

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

logits

z2: “dog-like”

z3: “frog-like”

z1: “cat-like”

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1
What conditions do I need for
to be a probability distribution?

pk

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

95

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

logits

z2: “dog-like”

z3: “frog-like”

z1: “cat-like”

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1
What conditions do I need for
to be a probability distribution?

pk

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

96

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

96

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Type your A
in chat!

Q: What are some functions
that are always positive?

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

96

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Type your A
in chat!

Q: What are some functions
that are always positive?

expx2

σ ReLU |x |

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

96

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Type your A
in chat!

Q: What are some functions
that are always positive?

expx2

σ ReLU |x |

24.5
164.0

0.18

exp

Unnormalized
probabilities

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

97

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

24.5
164.0

0.18

exp

Unnormalized
probabilities

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

97

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

24.5
164.0

0.18

exp

Unnormalized
probabilities

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

97

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

24.5
164.0

0.18

exp

Unnormalized
probabilities

normalize
0.13
0.87
0.00

Class
probabilities

Lecture 2: NNs and pytorch

Interpreting the output probabilistically

97

✓ Positivity

✓ Sums to unity:

pi > 0
K

∑
i=1

pi = 1

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

24.5
164.0

0.18

exp

Unnormalized
probabilities

normalize
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

Lecture 2: NNs and pytorch

Loss function: Cross entropy

98

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Softmax
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

Lecture 2: NNs and pytorch

Loss function: Cross entropy

98

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Softmax
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

1
0
0

Target

= y
Correct

probabilities

= x

Lecture 2: NNs and pytorch

Loss function: Cross entropy

98

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Softmax
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

1
0
0

Target

= y
Correct

probabilities

= x
Compare

probability distributions

Lecture 2: NNs and pytorch

Loss function: Cross entropy

98

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Softmax
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

1
0
0

Target

= y
Correct

probabilities

= x
Compare

probability distributions

Loss: negative log
likelihood

Lecture 2: NNs and pytorch

Loss function: Cross entropy

98

CS231n: Lecture 3

z = Wx, z ∈ ℝKlogits:

3.2
5.1

-1.7

logits

Softmax
0.13
0.87
0.00

Class
probabilities

Softmax function:

pi =
exp(zi)

∑K
i=1 exp(zi)

1
0
0

Target

= y
Correct

probabilities

= x
Compare

probability distributions

Loss: negative log
likelihood

ℒ = − log P(Y = yi |X = x)

= − log
exp(zyi

)
∑j exp(zj)

Cross entropy loss

